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Abstract

Although representation learning has trans-

formed semantic modeling in NLP, representa-

tions of linguistic style remain underexplored—

partly due to conflicting definitions of style

within and beyond NLP or unclear immediate

advantages of separate style representations. In

this survey, we provide an overview of style

conceptualizations across different research

fields with a focus on NLP and (socio-)linguis-

tics and suggest a working definition of style

for practitioners. Then, we review methods for

creating and evaluating style representations.

We conclude by discussing how style represen-

tations can make crucial contributions to the

modern NLP pipeline (e.g., in dataset curation

or evaluation) and to the application of NLP

methods in other fields. Throughout our survey,

we sketch pressing open research questions in

the landscape of style representations, empha-

sizing the need for better evaluation approaches

and more comprehensive style representations.

1 Introduction

The Lego Grad Student1 posted in July 2020,

Videoconferencing from his apartment

with his advisor, the grad student feels

like the victim of a home invasion.

Now consider a rephrasing by GPT-5.2 using the

Wikipedia-style prompt from Maini et al. (2024):

While conducting a videoconference with

his academic advisor from his apartment,

the graduate student experiences the in-

teraction as an intrusion into his private

living space.

The linguistic style of the original post (e.g., more

informal, compact) likely contributed to the 3k likes

it received. Style can affect a reader’s perception as

1The “Lego Grad Student” is an online creator that received
engagement on Twitter and Instagram with photos of LEGO
figures playing out scenes in a grad student’s life. This mes-
sage was posted during the COVID-19 pandemic.

Figure 1: Semantic representations differ from style

representations We compare reasoning traces from

Muennighoff et al. (2025), generated with Gemini and

DeepSeek for the same reasoning problems. Style rep-

resentations can distinguish between the two models—

confirming results in Rivera Soto et al. (2023)—while

semantic representations overlap. See §B.1 for details.

it can, for example, influence engagement (Munaro

et al., 2024; Banerjee and Urminsky, 2025) and

change the persuasiveness of arguments (El Baff

et al., 2020; Parhankangas and Renko, 2017). More-

over, style also influences human quality ratings of

generated content2 (Cai et al., 2024; Wu and Aji,

2025) leading to one of our main takeaways: If you

care about LLMs, then style matters.

However, style is often disregarded in NLP. As a

result, language models can be brittle across (or not

robust to) style-like features: rephrasing prompts

in different styles leads to different performances

(Mizrahi et al., 2024; Wahle et al., 2024); LLM

judges can prefer long, formal, or synthetic texts

over relevance (Cao, 2025; Feuer et al., 2025; Wu

and Aji, 2025); machine translations sound older

and more male than the original (Hovy et al., 2020);

models are biased against non-majority varieties

(Fleisig et al., 2024; Hofmann et al., 2024; Liang

et al., 2023) and perform worse on non-standard

spellings (Ebrahimi et al., 2018; Li et al., 2019),

simple and informal styles, and genres like poetry

(Anschütz et al., 2025; Cao, 2025; Qi et al., 2021;

Zhao et al., 2025). This brittlenessmight increase as

we train on more synthetic data (Guo et al., 2024).

2People might prefer the style of certain LLMs over others,
e.g., Claude’s style over ChatGPT’s, or want to customize an
LLM’s style (OpenAI, 2025); see Personalization in §5.2.



Style representations (i.e., vectors with entries

that are optimized for style information) can help:

They can improve model robustness by supporting

the curation of stylistically diverse (post-)training

datasets, support text generation in and evaluate

adherence to a target style, help machine text de-

tection, and enable new tasks (e.g., retrieval of doc-

uments in a target style). In the social sciences and

humanities, they can support the analysis of literary

texts and style dynamics in dialogue. A detailed

discussion of these possibilities follows in §5.

Semantic representations are often also sensitive

to style information as word prediction tasks also

need style information (Nguyen and Grieve, 2020;

Goldberg, 2019; Tenney et al., 2018; Miaschi et al.,

2020; Wegmann and Nguyen, 2021). However, we

believe that semantic representations alone are in-

sufficient for modeling style: They are usually not

evaluated on style-related tasks (Enevoldsen et al.,

2025; Muennighoff et al., 2023) and have limited

sensitivity to style (e.g., Mickus and Copot, 2024;

Zhang et al., 2023b). Most importantly, they are

trained to focus primarily on semantic information,

making it difficult to investigate the style of texts

separately from content (cf. Fig. 1).

In contrast to semantic representations, only a

few community-vetted and broadly tested methods

exist for representing the style of texts. The main

goals of this paper are to promote the wider adop-

tion of linguistic style representations within and

beyond NLP, guide practitioners towards key re-

sources, and highlight key challenges and research

directions in the study of style representations.

With this paper, we contribute:

• an overview of style definitions in linguistics

and NLP, including our own definition (§2)

• an overview of methods for representing (§3)

and evaluating (§4) style representations

• a discussion of why style representations are

useful for modern NLP and other fields (§5)

• practical resources, open research ques-

tions, and calls to action (several sections)

• an expanding GitHub repository3 collect-

ing datasets, tools, and other resources

Despite the significant attention given to style in

other modalities (e.g., speech), text-based NLP has

lagged behind, highlighting the need for this survey.

In line with this limited coverage, most of the work

we discuss focuses on English texts, but we urge

3https://github.com/AnnaWegmann/StyleSurvey/
and https://annawegmann.github.io/StyleSurvey/

the NLP community to consider more languages

and modalities in the future.

2 Style conceptualizations

Linguists often define style as a distinctive

pattern in language for some object of study

(e.g., for an author or group), while NLP

researchers often use “style” more loosely.

2.1 Style in linguistics

Researchers working with style often aim to de-

scribe a text’s structural linguistic features (i.e.,

how something is said) more so than its seman-

tic meaning4 (i.e., what is said). However, some

linguistics researchers might disagree with such a

separation (see §C), finding that style and content

are intertwined, at least to some extent (cf. §2.3).

Studying style might then be understood as study-

ing what makes a phrasing distinctive within a set

of possibilities (Irvine, 2001), for instance, how

speakers use linguistic choices related to external

factors like social background, identity, or register.

Overall, we emphasize that style is an elusive term

that has been defined in many different, sometimes

inconsistent, ways in linguistics and other fields.5

What are the objects of study? Style is usu-

ally studied in a relative sense, as a distinctive dif-

ference between objects of study (Irvine, 2001);

however, these objects vary. In (socio-)linguistics,

style has often been discussed as inter-individual

variation—the idiosyncratic choices that poten-

tially distinguish individuals from each other,

often referred to as their idiolect (Coulthard,

2004)—and intra-individual variation (Bell, 1984;

Irvine, 2001; Labov, 2006; Meyerhoff, 2006; Wag-

ner, 2025)—the change in the same speaker’s lan-

guage across situations. Famously, Labov (1972)

discovered that individuals’ speaking style becomes

more formal as they pay more attention to their

speech and more casual as they pay less attention.

Sociolinguists have additionally studied style as

inter-group variation—differences in the language

of people identifying with different social groups

(Bell, 1984; Eckert, 2008; Irvine, 2001; Kristiansen,

2024). For example, g-dropping (going vs. goin’)

4Or: referential meaning (Campbell-Kibler, 2011; Labov,
1972; Lavandera, 1978; Nguyen et al., 2016, 2021). Two
variants have the same referential meaning if they are the
same in a truth-conditional sense (i.e., true in exactly the same
situations), while the “social” or “stylistic significance” might
differ considerably (Labov, 1972; Weiner and Labov, 1983).

5See §C for an overview of other areas interested in style.

https://github.com/AnnaWegmann/StyleSurvey/
https://annawegmann.github.io/StyleSurvey/


may indicate a person’s association with a southern

U.S. region (Campbell-Kibler, 2007).

Genres and registers (or domains) have also been

objects of style research (Biber and Conrad, 2019;

Grieve, 2023). Literature from a historical period,

novels by a specific author, news reports, and blogs

can display very different linguistic patterns, which

might be called the style of that historical period,

literary author, news report, or blog (Biber and Con-

rad, 2019; Grieve et al., 2011; Hicke and Mimno,

2025; Irvine, 2001).

Researchers have considered more objects of

study than we discuss, like the communication envi-

ronment (e.g., speech before a crowd or a courtroom

in Ervin-Tripp, 2001) or the communicativemanner

(spontaneous vs. read speech in Williams and King,

2019). Researchers can also study combinations of

these objects (e.g., courtroom speeches by one indi-

vidual) or an object only in certain contexts (e.g., a

social group discussing a certain topic). For exam-

ple, Holliday (2021) finds that biracial Black men

displayed fewer African American6 intonational

features when discussing police narratives.

What is the function of style? Style might also

be defined as patterns in language tied to a spe-

cific function. Some scholars argue that style is

fundamentally embedded in social meaning, index-

ing social background and shaping social identity

(Campbell-Kibler et al., 2006; Coupland, 2007;

Eckert, 2008, 2012). For example, Labov (1972)

found that differences in the pronunciation of /r/ cor-

related with social class, and Eckert (1989) found

that self-identified “burnouts” at a Detroit school

used more non-standard linguistic features (e.g.,

gonna) than college-bound “jocks” (e.g., going to).

Labov originally viewed a speaker’s vernacular

as a reflection of their social identity, not an active

choice (Labov, 1972). More recent sociolinguistic

approaches see style as more agentive—not only re-

flecting identity but also performing and construct-

ing it (Eckert, 2012). For example, the development

of linguistic practices of trans activists can be tied

to their agency in creating identity (Zimman, 2019),

and speakers may choose styles for performative

functions like getting attention (Ervin-Tripp, 2001).

6While several linguistic features can describe both styles
and dialects, dialects are typically not called styles but distinct
types of language variation more clearly tied to speakers’ so-
cial backgrounds and geographic regions (Biber and Conrad,
2019; Grieve et al., 2025). Nonetheless, some researchers also
consider dialects as a kind of social style (Coupland, 2007).
We do not specifically exclude dialects in our definition (§2.3),
but our focus remains on non-dialectal stylistic variation.

Style can serve communicative functions in an

interaction (Coupland, 2007): Speakers may align

with (accommodate) or distance themselves from

the style of interlocutors or audiences (Bell, 1984;

Giles and Powesland, 1975; Giles et al., 1991;

Khaleghzadegan et al., 2024), thereby shaping so-

cial relationships and interactions (Coupland, 2007).

For example, Bell (2014) found that New Zealand

newscasters shifted their pronunciation when talk-

ing to audiences of higher or lower status.

Finally, some consider style to be aesthetic, with

no or limited function, and instead prefer the term

register for varieties of language associated with

a particular situational context (Biber and Conrad,

2019). When considering register as style, style

might serve further functions like structuring dis-

course and fulfilling communicative purposes.

2.2 Style in NLP

Some work in NLP uses the term style in ways

broadly consistent with linguistics, aiming to study

formal/informal styles and literary authorial styles

(e.g., Jhamtani et al., 2017; Rao and Tetreault, 2018;

Wegmann and Nguyen, 2021); however, others in-

creasingly use style as an umbrella term for general

attributes of texts that vary across datasets (Jin et al.,

2022) such as the sentiment of a text (Reif et al.,

2022; Shen et al., 2017), but do not necessarily

align with a typical linguistic definition of style.

Separating content and style As in linguistics

(§2.1), work in NLP finds that content and style

are often correlated (Jafaritazehjani et al., 2020;

Mikros and Argiri, 2007). Still, separating style and

content tends to be a natural distinction for many

NLP applications. Specifically, NLG systems have

to fundamentally determine what information to

generate—the knowledge, or message—and what

style to generate it in (Gatt and Krahmer, 2018).

While neural NLG systems often handle content and

style implicitly, generating texts end-to-endwithout

explicit planning stages, the distinction between

style and content remains useful in practice, for

example, when curating datasets, rephrasing and

adapting texts, or evaluating the factual correctness

of model outputs (§5).

2.3 A working definition for style in NLP

We propose a working definition of style for NLP

practitioners.7 Throughout the paper, we consis-

7Our definition does not specifically exclude concepts like
dialects, registers, or varieties for practical reasons: (i) the



tently use the same colors for the same concepts.

Definition A linguistic style consists of dis-

tinctive patterns in language use for an

object of study (e.g., individuals, a group

of authors in a given register) in its lexical,

syntactic, morphological, orthographic, dis-

course, phonetic, etc. composition. These

patterns should not chiefly measure, but can

correlate with, semantic meaning.

For example, a person discussing American

football might talk more casually than when dis-

cussing ballroom dance, yet some underlying lin-

guistic features may remain consistent in both sit-

uations and carry social meaning (§2), e.g., about

the speaker’s upbringing. When studying style,

we might study the differences or commonalities

between discussing American football and ball-

room dance, depending on the object of study, i.e.,

whether we are currently interested in a specific

individual, demographic, situation, etc.

3 Representing style

Linguistic style is usually operationalized

with patterns in linguistic features like func-

tion words or automatically-learned repre-

sentations like neural text representations.

3.1 Predefined features

Style is often operationalized as the systematic

variation of linguistic features, which can span var-

ious linguistic levels including morphology, or-

thography, syntax, and discourse (Biber and Con-

rad, 2019; Crystal and Davy, 1969; Grieve, 2007;

Kniffka, 2007; Labov, 1972; Neal et al., 2017; Sta-

matatos, 2009). App. Tab. 1 gives example

features (e.g., g-dropping) at each level; §D lists

tools for extracting predefined features. The pri-

mary appeal of predefined features is that they are

supported by linguistic theory, have been tested ex-

tensively, and are generally interpretable (i.e., have

a meaning understandable to humans). The features

can be used with statistical approaches like logistic

regression or dimensionality reduction with factor

analysis to determine how important each feature is.

This transparency is especially important in high-

stakes settings, such as forensic linguistics, where

separation between such terms is not consistent in linguistics,
and (ii) computational style representations are commonly
expected to be sensitive to dialect, register, and variety in-
formation (§4). We leave further practical disentanglement
between style and other terms for future work.

it is crucial to explain a model’s decision-making

process (Argamon, 2018; Grant, 2022).

One such feature-based style operationalization

is stylometry, which measures the frequencies of

linguistic features that help discriminate between

author styles. There is no fixed set of features that

work for every individual, despite much work at-

tempting to find one (Juola, 2006; Nini, 2023); in-

stead, the features often depend on the nature of the

data (e.g., genre, register, amount of data, language)

(Argamon, 2018). Nonetheless, function words

(i.e., words like prepositions and conjunctions that

primarily serve a grammatical role) and character

n-grams (i.e., n successive characters), in particu-

lar, have proven quite effective at discriminating

authors (Grieve, 2007; Houvardas and Stamatatos,

2006; Peng et al., 2003; Kestemont, 2014;Mosteller

and Wallace, 1963) and speakers (Aggazzotti and

Smith, 2025; Aggazzotti et al., 2024; Doddington,

2001; Sergidou et al., 2023; Tripto et al., 2023).

N-grams, whether character, token/word, or part-

of-speech tag n-grams, are also beneficial because

they work across many languages.

Other feature operationalizations serve differ-

ent purposes related to style. For example, Mul-

tidimensional Analysis (MDA) (Biber, 1988) is

used to determine how texts differ in their com-

municative function and originally relied on mostly

grammatical category-related features (e.g. nouns,

verbs); however, modern extensions (e.g., Clarke

and Grieve, 2017; Grieve et al., 2011) additionally

include more complex features, such as syntactic

constructions and semantic classes.

3.2 Automatically-learned features

By automatically-learned features or embeddings,

we mean vector representations of text produced

by (usually neural) models. In contrast to prede-

fined features, automatically-learned features do

not rely on specific, established features but can

automatically discover style patterns. Further, they

often perform better than predefined features on

downstream tasks, but are usually less interpretable.

Because it is difficult to operationalize definitions

of style, models are usually optimized in proxy

downstream tasks, such as authorship verification

or style transfer. See §D for links to models.

Authorship verification The most popular ap-

proach to date trains models with a contrastive ob-

jective (Dong and Shen, 2018; Khosla et al., 2020)

to learn representations where two text samples are



close together in vector space if they are written by

the same author and far apart otherwise (Andrews

and Bishop, 2019; Khan et al., 2021; Kim et al.,

2025; Man and Huu Nguyen, 2024; Rivera Soto

et al., 2021; Sawatphol et al., 2022; Thakrar et al.,

2025; Wang et al., 2023; Wegmann et al., 2022).

Representations trained on this task have been

shown to capture stylistic information (Wang et al.,

2023; Wegmann and Nguyen, 2021).

Since training datasets may contain undesired

correlations—for example between style and con-

tent when an author only writes about one topic—

some work creates harder positive (i.e., same au-

thor) and negative (i.e., different author) pairs to

improve disentanglement (Man and Huu Nguyen,

2024; Patel et al., 2025). For example, Wegmann

et al. (2022) use negative pairs that are approxi-

mately about the same topic, and Patel et al. (2025)

leverage LLMs to create a synthetic dataset of near-

exact paraphrases by varying predefined features.

Building on such disentanglement strategies, recent

work generalizes style representations to multilin-

gual settings (Kim et al., 2025; Qiu et al., 2025),

where negative pairs must be carefully constructed

to avoid trivial cross-lingual differences.

Style transfer Another line of work learns repre-

sentations via style-transfer, aiming to rewrite text

for a stylistic attribute without altering its semantic

meaning (Cheng et al., 2020b; John et al., 2019;

Shen et al., 2017; Zhu et al., 2024). For instance,

a model may be trained to convert formal text into

informal text, conditioned on both the input and an

embedding of the target style. Under this objective,

embeddings learn features indicative of informality.

These methods usually rely on explicit style-

content disentanglement and tend to learn repre-

sentations that are more narrow in scope, often tied

to single attributes (e.g., politeness) or differences

between two corpora (Shen et al., 2017). John et al.

(2019) train an auto-encoder to produce a style and

a content vector, imposing a style classification loss

on the style representation and an adversarial style

classification loss on the content vector. Cheng et al.

(2020b) minimizes the estimated mutual informa-

tion between the style and content representations.

Interpretable LLM-guided stylometry A dis-

tinctive method is LISA (Patel et al., 2023), which

learns embeddings where each dimension is an in-

terpretable feature (e.g., use of an elongated word).

The authors create a synthetic dataset by prompt-

ing GPT-3 for stylometric features, then train an

Figure 2: By-product of authorship verification train-

ing Stylistic representations, though trained on the “id-

iolectal” authorship verification task, cluster TOEFL

(Test of English as a Foreign Language) essays by the

native language of the writer. See §B.3 for more details.

EncT5 (Liu et al., 2022) model to predict the pres-

ence of each feature in a text sample. Because dis-

tances in this space are not well-defined, they fit a

linear transformation on the authorship verification

task. LISA is the first method to use LLM-based au-

tomatic labeling for style representations, offering

a middle ground between hand-crafted features de-

rived by human experts and automatically-learned

representations. However, limitations of LLMs

might need to be considered (§1, §5.1).

3.3 The future of style representations

Define what we want to represent

Training representations on the authorship veri-

fication task implicitly defines style as the idiosyn-

crasies exhibited by authors in certain corpora (Zhu

and Jurgens, 2021). However, because the con-

trastive dataset might never pair authors from the

same social group as negatives, a representation

may inadvertently primarily encode group-level

features. Indeed, we find that various “idiolectal”

style representations encode features discriminative

of writers’ native language in Fig. 2. We call on the

community to explicitly define their object of study

(e.g., idiolect, cf. §2.3), use learning approaches

like hard negatives to control for other concepts

(e.g., variation within the same social group), and

evaluate whether representations primarily capture

variations for the defined object of study.

Build general-purpose style embeddings

It remains an open challenge to learn general-

purpose style embeddings that cover as many ob-

jects of study as possible and are, for example,

sensitive to individual, group, register, and time



period variation at the same time. For this, new

training objectives could explicitly target different

objects of study. Using multiple objectives might

require stronger disentanglement objectives, for ex-

ample, based on minimizing mutual information of

two representations (Cheng et al., 2020a), adversar-

ial objectives (John et al., 2019), or by employing

VAEs to explicitly disentangle between syntax and

semantics (Chen et al., 2019; Bao et al., 2019).

Improve training

There are several other areas in training that

remain underexplored. For example, fine-tuning

newer encoder models like ModernBERT (Al-

shomary et al., 2025b), designing tokenizers specif-

ically for style representations (Wegmann et al.,

2025), and pooling not only the last, but several

or all, encoder layers might improve performance

(Alshomary et al., 2025b).

Construct interpretable embeddings

An open question is how to learn representa-

tions with interpretable dimensions that are still

as performant as their uninterpretable counterparts.

Such work may benefit from sparse autoencoders—

which have recently been shown to automatically

learn interpretable features (Huben et al., 2024)—or

from combining predefined features with neural

training—for example, by training models to clas-

sify predefined features (cf. Alkiek et al., 2025).

4 Evaluating style representations

To develop better style representations, we

must be able to compare and evaluate them,

but no standard currently exists.

4.1 Previous approaches

We divide evaluation approaches according to our

definition of style (§2.3), grouping them into pre-

defined features, objects of study—including au-

thorship verification—and content-independence.

On predefined features Learned representations

(§3.2) can be evaluated on their sensitivity to prede-

fined features (§3.1). Various studies use probing

classifiers (Adi et al., 2017; Köhn, 2015) as well

as recurrent/recursive neural networks (Belinkov

et al., 2017; Shi et al., 2016) to assess which lin-

guistic features are captured by representations. For

example, Alshomary et al., 2025b probe style rep-

resentations on morphology and syntax. However,

probing has limitations, such as uncertainty over

how to interpret classifier performance (Belinkov,

2022). Other approaches are sparse, but include

studying performance loss on style tasks when re-

moving syntactic and discourse information from

texts via shuffling (Zhu and Jurgens, 2021) and

evaluating the cosine similarity between texts that

include the same predefined features like contrac-

tion usage or use of passive voice (Patel et al., 2025;

Wegmann and Nguyen, 2021).

On objects of study Representations have also

been evaluated for their ability to classify common

objects of study (§2), including probing and clas-

sifying (i) literary authors (Wang et al., 2023), (ii)

book genres (Maharjan et al., 2019), (iii) registers

(Alkiek et al., 2025), and (iv) demographic informa-

tion of authors like gender or age (Ding et al., 2019;

Kang et al., 2019; Kang and Hovy, 2021). Other

work examines whether representations of formal/-

complex texts are similar to other formal/complex

texts (Wegmann and Nguyen, 2021). Further, Ter-

reau et al. (2021) use representations to predict an

author’s distribution on predefined features.

Authorship attribution Many works evaluate

style representations according to their useful-

ness for authorship attribution or verification tasks

(Alkiek et al., 2025; Ding et al., 2019; Maharjan

et al., 2019; Patel et al., 2025), including testing

whether a representation clusters documents by the

same author together (Hay et al., 2020). Datasets

and domains like e-mails, blogs, Reddit, Amazon

Reviews, Yelp reviews, fanfiction, or shared PAN

tasks8 from the years 2011–2025 (Argamon and

Juola, 2011; Bevendorff et al., 2025a) are com-

monly used. See Huang et al. (2025) and our

GitHub page for a collection of typical datasets.

Recently, transcribed spoken domains, such as tele-

phone conversations, interviews, speeches, and

podcasts, have also been used (Aggazzotti et al.,

2024, 2025b; Tripto et al., 2023). However, without

careful preparation, datasets might contain named

entities, leakage between train and test sets (Brad

et al., 2022; Sawatphol et al., 2024), or spurious

correlations with topic (Wegmann et al., 2022),

making performance less interpretable. There are

promising contributions tackling such issues, like

Israeli et al. (2025) and Khan et al. (2021), who

provide large sets of authors across different top-

ics on Wikipedia and Reddit, Tripto et al. (2023),

who provide speech transcripts across various reg-

8 https://pan.webis.de/shared-tasks

https://pan.webis.de/shared-tasks


isters and topics, and Tyo et al. (2022) who design

a benchmark across domains for authorship attri-

bution and verification. However, researchers typi-

cally use a differing selection of tasks, data, domain

combinations, or splits, making performance scores

incomparable across different studies.

Content-independence Even though it is debat-

able whether linguistic style generally excludes con-

tent information (§2), style representations are com-

monly tested on “content-independence”. This has

been evaluated by studying the loss of performance

on style-related NLP tasks (like authorship verifi-

cation or attribution) when masking out less fre-

quent words or “content words” (Stamatatos, 2017;

Wang et al., 2023; Zhu and Jurgens, 2021) or when

changing the style of a text with an automatic para-

phraser (Wang et al., 2023). Other approaches test

whether style representations are more sensitive

to style changes than to content changes (Weg-

mann and Nguyen, 2021; Wegmann et al., 2022),

whether they can distinguish speakers discussing

the same conversational topic (Aggazzotti et al.,

2024, 2025b), and whether they perform poorly

on semantic tasks like topic classification (Wang

et al., 2023). Generally, few style representations

reach high scores on content-independence (

App. Tab. 3) and might benefit from more ex-

haustive content disentanglement.

4.2 The future of style evaluation

Increase interpret- and explainability

The evaluation of learned style representations

on predefined features is not yet systematic, but

is promising to pursue, as it can build on rich lit-

erature in linguistics and stylometry (§2.1, §3.1)

and can help make learned representations more in-

terpretable. Further, there is only limited work on

explaining learned style spaces. Alshomary et al.,

2025a pioneer this direction by generating explana-

tions on why embeddings cluster certain authors.

Leverage measurement theory

In the social sciences, measures are commonly

assessed for reliability (do measures return the

same result with repeated measurement?) and va-

lidity (do measures capture the concept of interest?).

Measurement theory could provide the evaluation

of style embeddings and the construction of style

benchmarks with a theoretical framework, highlight

gaps, and provide inspiration for future methods.

See Trochim et al. (2015) for more on measure-

ment theory. See Fang et al. (2022) for examples of

how to apply measurement theory to embeddings

and Bean et al. (2025) for recommendations on how

to construct valid benchmarks. We give examples

of how measurement theory might be applied for

style embeddings and benchmarks in App. §E.

Develop standard benchmarks

Only a few contributions aim to systematically

evaluate representations on linguistic style, leav-

ing this area of research behind semantic embed-

dings and approaches likeMTEB (Enevoldsen et al.,

2025; Muennighoff et al., 2023). We discuss some

notable pioneers: Kang and Hovy (2021) collected

the largest dataset to date for style classification;

however, several of their classes (e.g., sentiment)

would not be considered style in linguistics. Fur-

ther, STEL (Wegmann and Nguyen, 2021) is a

theory-driven benchmark on single linguistic prop-

erties and broader style categories that evaluates

representations with cosine similarities—thus not

needing training. Neither approach covers a wide

range of styles or domains or clearly defines an ob-

ject of study (cf. §2.3). Providing an open, easily ac-

cessible, high quality, and diverse style benchmark

spanning multiple objects of study like registers

and authors would be a significant contribution.

5 What style representations enable

Style representations can make crucial con-

tributions to the modern NLP pipeline and

to applications of NLP methods.

We provide a selection of examples of what style

representations can enable. We list a few more in

§F, including authorship attribution, bias reduction,

reducing spurious correlations in annotations, and

improving generalization across styles.

5.1 An improved NLP pipeline

Curate multi-stage training datasets

LLMs are often not robust to stylistic variation

(§1). Manipulating and diversifying the style of

texts in in-context learning (ICL) examples as well

as pre- and post-training datasets—for example, by

stratified curation or rephrasing in different styles—

has helped output diversity and performance across

stylistic variation (Chen et al., 2024b; Lambert et al.,

2025; Levy et al., 2023;Maini et al., 2024). Curricu-

lum learning ormulti-stage training found increased

success recently (OLMo et al., 2025; Ettinger et al.,



2025; Allal et al., 2025). We believe that style rep-

resentations can be a crucial tool to monitor the

overall stylistic diversity of a dataset (cf. Nguyen

and Ploeger, 2025) and can help select data points

for training that increase or decrease stylistic diver-

sity according to a curriculum. Further, they can

help rephrase texts in other styles (cf. Maini et al.,

2024) using style transfer methods (§5.1) and select

datapoints that align with a target style in ICL and

(post-)training datasets.

Diversify style in evaluation datasets

Both style and content influence human prefer-

ence judgments (Cai et al., 2024; Chen et al., 2024a;

Singhal et al., 2024; Tianle Li, 2024). However,

state-of-the-art performance is often established

only on content tasks (mostly NLU and reason-

ing) using texts with limited stylistic variation (Guo

et al., 2025; Truong et al., 2025). This might obfus-

cate a model’s ability to generalize to other domains

or understand and generate diverse or preferred

styles.9 Instead, benchmarks could be composed

not only based on what they test, but also based on

whether their datasets or tasks cover different or

expected regions of the style embedding space.

5.2 Various other applications

Generating in specific styles Representations of

style can help generate text in a specific style, or

adapt to different domains (Horvitz et al., 2024a,b;

Liu et al., 2023; Zhang et al., 2023a). Such style

steering approaches can enable accessibility in lan-

guage generation (Anschütz et al., 2025; Cao et al.,

2020; Surya et al., 2019)—for example, by simpli-

fying a text for a child or summarizing a text for

a non-expert. The style of generated texts is often

evaluated by comparing their style representations

to those of a target style (Chim et al., 2025; Horvitz

et al., 2024a; Jangra et al., 2025; Liu et al., 2023).

Personalization Interest in personalized model

responses has grown recently (Zhang et al., 2025b;

Liu et al., 2025). Style plays a crucial role in person-

alization (Zhang et al., 2025b; Liu et al., 2025), and

style representations could be used to recognize the

style of humans, infer their preferences, and adapt

generated responses to them (Zhang et al., 2025a).

Machine text detection There is a growing con-

cern about the misuse of LLMs, including disinfor-

mation, spam, and plagiarism. Recent work (Beven-

9For example, textbooks might not be all you need (cf. Li
et al., 2023) for perplexity across registers (Maini, 2023).

dorff et al., 2025b; Elkhatat et al., 2023; Gehrmann

et al., 2019; Kumarage et al., 2023; Sun et al., 2025;

Uchendu et al., 2020) shows that LLMs exhibit id-

iosyncrasies that distinguish their writing from hu-

man writing. Detectors that use style embeddings

have been effective in in-domain and cross-domain

settings (Kim et al., 2025; Rivera Soto et al., 2023).

Privacy On the flip side of attribution and detec-

tion is the task of obfuscating someone’s identity.10

Style representations can help determine if text that

has been anonymized, such as via paraphrasing, suf-

ficiently removes someone’s style and protects their

privacy (Aggazzotti et al., 2025a; Alperin et al.,

2025; Bao and Carpuat, 2024; Shokri et al., 2025).

Push style representations as a founda-

tional method for NLP and other fields
Just as semantic embeddings have become foun-

dational, style representations could also be foun-

dational across fields. Next to the mentioned uses,

they could help retrieve documents with a (dis-)sim-

ilar style to a search query (Cao, 2025), track style

shift in dialogue in sociolinguistics (Nguyen, 2025),

or analyze literary text in the digital humanities

(Hicke andMimno, 2025), with current embeddings

already seeing significant adoption.11

6 Conclusion

With this paper, we hope to have demonstrated

the potential of style representations for the NLP

community. We call on researchers to use clearer

definitions of style, to more explicitly disentangle

evaluation and training approaches, and to develop

evaluation methods into a standard. We end by not-

ing that style has unique properties that may require

unique considerations and methodologies. Among

these, the style of a text is inherently relative. For

example, it might be clearer and more relevant to

judge if a text (e.g., How are you?) is more formal

than another (e.g.,What’s up?) rather than if it is

formal in isolation; consider also App. Fig. 3 and

Irvine (2001). This relativity may require new so-

lutions in training and evaluating representations—

for example, curating training data with hard pos-

itives and negatives positioned in relation to each

other, or testing whether representations correctly

rank sentences along a stylistic dimension.

10For example, see the PAN Author Masking series
at https://pan.webis.de/shared-tasks.html#author-
masking.

11https://huggingface.co/AnnaWegmann/Style-
Embedding reached 200k downloads in October 2025.

https://pan.webis.de/shared-tasks.html#author-masking
https://pan.webis.de/shared-tasks.html#author-masking
https://huggingface.co/AnnaWegmann/Style-Embedding
https://huggingface.co/AnnaWegmann/Style-Embedding


Limitations

Consider style in modalities other than

text.
Many of the examples and citations throughout

this paper refer to text-based style since the lim-

ited style research in NLP has focused on written

language, but linguistic style also manifests, and

is perhaps better studied, in other modalities like

speech (e.g., tone of voice), gestures, and vision

(e.g., image generation). We leave considerations

for representing style in other modalities for future

work.

Give more attention to style in languages

other than English.

The bulk of the work we discuss considers style

in English. For example, we mainly discuss def-

initions of style considered by American schol-

ars (cf. §2.1), and we discuss predefined features

mainly for English (cf. § 3.1)—for instance, “g-

dropping” is an English-specific marker. Different

scripts and languages will usually need different

predefined features and have a different history

regarding style definitions and sociolinguistic re-

search (see also Ball et al., 2023). However, our

discussed approaches to automatically learn and

evaluate representations should largely transcend

languages and scripts as long as architectural com-

ponents (e.g., tokenizers), evaluation datasets, and

predefined features are adapted for optimal perfor-

mance. We believe that developing style represen-

tations for languages other than English is a crucial

future step and call on the community to continue

pioneering work like Kim et al. (2025) and Qiu et al.

(2025).

Why not use a different term instead of style?

...the extremely broad and ambiguous ref-

erence of the term [style] in everyday use

has not made its status as a technical lin-

guistic term very appealing.

—David Crystal

Scholars, such as Crystal (2011), have argued

against using the term style at all due to its increas-

ingly vague and colloquial use. Instead, researchers

have opted to describe the specific phenomenon

they are interested in (e.g., syntactic variation) and

use less over-defined terms (e.g., language varia-

tion). While that can be helpful in some cases, we

argue that using the term style is still worthwhile

because (i) the term is used regularly in NLP (with

200 publications in the ACLAnthology mentioning

“style” in the title or abstract in 2024) highlighting

the interest in the term; (ii) style seems to provide

a more concise and intuitive label than alternatives

like “distinctive patterns in the used language vari-

eties” or “systematic variation in textual features”;

and (iii) the term style can draw from decades of

theoretical foundation in stylometry and sociolin-

guistics.

Style is a concept used in many fields. Why fo-

cus on the ones discussed in the paper? Next

to NLP, we focus on definitions and concepts of

style used in sociolinguistics, linguistics, stylome-

try, forensic linguistics, and corpus linguistics (§2,

see an overview of the fields in §C). To the best

of our knowledge, these are the most active areas

already using, or intuitive areas that could profit

from using, computational methods for analyzing

style. Further, we believe that sociolinguistics is

particularly relevant to consider, as its study of

the interaction between language and society has

unique potential to inform NLP methods (Nguyen,

2025), especially as NLP models are increasingly

used within, and have growing impact on, society.

Ethical considerations

Style modeling is closely related to author profiling

(cf. §4)—the task of recovering author character-

istics based on the text they wrote (Nguyen et al.,

2013; Rangel et al., 2013). Note that author pro-

filing can be useful for improving performance on

some NLP tasks (Hovy, 2015); however, identify-

ing an author’s gender, age, personality type, etc.

has increasingly been criticized for bias and pri-

vacy concerns (Brennan et al., 2012; Elazar and

Goldberg, 2018; Li et al., 2018; Lison et al., 2021).

Integrating more language diversity, and with it

social factors, into NLP is a double-edged sword:

There are clear advantages to integrating more di-

versity into NLP models and, specifically, repre-

senting minorities to increase the fairness and rep-

resentativeness of NLP models (Bird and Yibarbuk,

2024; Grieve et al., 2025; Hovy and Yang, 2021;

Markl et al., 2024); however, making NLP models

more sensitive to social factors could also make

them a threat to privacy across social groups. The

performance of machine learning approaches on

tasks like author profiling could increase, resulting

in a large potential for misuse, such as the following

examples: (1) Author profiles could be used to iden-

tify and profile individuals or political dissenters



(Hovy and Spruit, 2016); (2) Author profiling could

be used for predatory ad targeting, which might

show gambling ads to vulnerable groups or not

show job postings to certain social groups (Dudy

et al., 2021); and (3) Author profiles could lead

to data leakage, such as making health conditions

recoverable for insurance companies that might in-

crease their rates for certain individuals (Dudy et al.,

2021).

This conflict between privacy and fairness has

been described as one of the “dual-use problems”

in NLP by Hovy and Spruit (2016). We aim to

improve fairness without compromising individual

privacy and safety but acknowledge that progress

in one might sometimes come at the expense of the

other. Therefore, we encourage researchers in

the NLP community to engage with the dual-use

problem more actively and work on techniques to

make the design of language models more sensitive

to human values, as suggested in Dudy et al. (2021),

ideally without actively working on approaches to

make sensitive data recoverable from texts. We fur-

ther encourage researchers to actively anonymize

datasets used for modeling and the evaluation of

style representations.

We confirm that we have read and abide by the

ACL Code of Ethics. Besides those mentioned, we

do not foresee immediate risks of our work.
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“what’s up?”

“How are you?”

“I trust this message finds you well.”

Figure 3: Style is relative. It might be more difficult or

less interesting to make categorical judgments about a

text’s style in isolation than, for example, judging if a

text is more formal than another on a formality contin-

uum. As Irvine (2001) writes on page 22, “It is seldom

useful to examine a single style in isolation” and “atten-

tion must be directed to relationships among styles—to

their contrasts, boundaries and commonalities.”

A Additional figures and tables

Fig. 4 provides a visual organization of the structure

of this survey paper, Tab. 1 shows an overview of

various predefined feature style operationalizations

(§3.1), and Fig. 3 portrays an example of why style

may require new solutions (§6).

B Motivating examples

B.1 Reasoning traces in the s1 dataset

We created Fig. 1 using the first 500 elements of the

s1 datasets provided by Muennighoff et al. (2025)

with reasoning traces generated by Gemini Flash

Thinking Experimental and DeepSeek R1.12 We

used a semantic representation model13 and a style

representation model14 and UMAP (McInnes et al.,

2018) with default settings.

Pioneering work found that the style of reason-

ing traces might be important to consider for the

performance of reasoning models (Lippmann and

Yang, 2025). Note, however, that their definition

of style does not fully align with the definition used

in this paper (e.g., including “non-linear thinking”

as a style). In an ablation, we compare the seman-

tic and style representations of the DeepSeek and

Gemini teacher models and the distilled Qwen mod-

els on DeepSeek and Gemini. While the original

Muennighoff et al. (2025) paper trains Qwen mod-

els only on Gemini reasoning traces, the authors

later experimented with DeepSeek reasoning traces

and found them to lead to better performance.15 We

take the first 270 s1 reasoning traces as provided by

Muennighoff et al. (2025) and use the fine-tuned

Qwen models on Gemini16 and DeepSeek17 reason-

ing traces to generate reasoning traces18 for the first

270 Math50019 problems (Lightman et al., 2023).

We use a different dataset from s1 to query student

models to avoid artifacts of memorization. We

choose Math500 as the distilled s1 Qwen models

were also evaluated on it. See the results in Fig. 5

using UMAP visualization as before. We show that

the style of the model distilled on Gemini reasoning

traces is also closer in style to the Gemini reason-

ing traces than to the DeepSeek reasoning traces.

Thus, the student model is effectively adopting the

style of the teacher model (same for the DeepSeek

model).

B.2 Rephrases of the MRPC dataset

Using synthetic data in pre- and post-training

is increasingly common. We take the prompt

from Maini et al. (2024) and use the Mistral-7B-

Instruct-v0.1 model20 (Jiang et al., 2023) to create

12“gemini_thinking_trajectory” and ‘deepseek_think-
ing_trajectory” column in https://huggingface.co/
datasets/simplescaling/s1K-1.1

13Hugging Face’s sentence-transformers/all-mpnet-base-v2
14Hugging Face’s AnnaWegmann/Style-Embedding
15https://x.com/Muennighoff/status/

1886405528777073134
16https://huggingface.co/simplescaling/s1-32B
17https://huggingface.co/simplescaling/s1.1-

32B
18By preceding the response with “\n<|im_start|>think\n”
19https://huggingface.co/datasets/

HuggingFaceH4/MATH-500
20https://huggingface.co/mistralai/Mistral-

7B-Instruct-v0.1
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Figure 4: Overview of the survey structure This figure was digitalized from our own hand-drawn figure using

NotebookLM and DALL-E. It keeps the same wording as the source material.

Figure 5: Style representations of distilled Qwenmod-

els are close to teacher modelsWe compare reasoning

traces on s1 for DeepSeek and Gemini models (Muen-

nighoff et al., 2025) and reasoning traces on Math500

(Hendrycks et al., 2021) generated by models distilled

on the s1 DeepSeek and Gemini reasoning traces respec-

tively. The style representations (right) group the style

of the student model closer to the style of the teacher

model, while the semantic representations (left) overlap.

Wikipedia-style rephrases of the first 500 elements

of the MRPC dataset (Dolan and Brockett, 2005).

We use the same models as in §B.1 for the semantic

and style representations as well as hyperparame-

ters for the UMAP visualization. Style representa-

tions clearly distinguish the LLM rephrases from

the original sentences, while semantic representa-

tions do not (Fig. 6).

B.3 Clustering writers of English by native

language

We created Fig. 2 using the ETS Corpus of Non-

Native Written English (LDC2014T06) (Blanchard

et al., 2014). The corpus is comprised of En-

glish essays written by speakers of 11 non-English
native languages as part of an international test

of academic English proficiency, TOEFL (Test

of English as a Foreign Language). We used

Figure 6: Comparing semantic and style representa-

tions of LLM-rephrasesWe compare MRPC sentences

(Dolan and Brockett, 2005) and their LLM-generated

“Wikipedia-style” rephrases using prompts from Maini

et al. (2024). Style embedding models (right) can easily

distinguish between the original and the LLM-rephrased

sentences, while semantic embeddings (left) overlap.

Studying stylistic diversity of LLM-rephrases is relevant

as stylistic rephrasing is increasingly used in dataset cu-

ration for pre- and post-training.

LUAR21 (Rivera Soto et al., 2021), a style rep-

resentation model trained on the authorship ver-

ification task. Each point in the figure is an em-

bedding of 5 TOEFL essays written by authors of

the same native language picked at random. We

reduce the dimensionality to two components us-

ing UMAP (McInnes et al., 2018) with default set-

tings. Although the style representation was ini-

tially trained on the “idiolectal” authorship verifi-

cation task (distinguishing authors based on their

distinctive language use), Fig. 2 reveals that it also

captures features indicative of the writer’s native

language.

21https://huggingface.co/rrivera1849/LUAR-MUD

https://huggingface.co/rrivera1849/LUAR-MUD


C Additions to style conceptualizations

Fully separating style and semantic meaning

might be impossible.

Sociolinguists generally think of styles as

different ways of saying the same thing.

In every field that studies style seriously,

however, this is not so.

— Penelope Eckert

A precise separation of semantic meaning and

style poses practical challenges. It has been ar-

gued that, for example, only Labov (1972)’s origi-

nal object of study—phonological variables—can

leave semantic meaning untouched, whereas all

other variables, including lexical and syntactic vari-

ables, will necessarily change the semantic mean-

ing (Campbell-Kibler, 2011; Lavandera, 1978; Sun

et al., 2023). Additionally, Eckert (2008, 2012)

argues that using a certain style systematically con-

nects an utterance to the social world, and that style

thus influences social meaning. Others argue that

any two forms must necessarily contrast in mean-

ing (Clark, 1992). Some work in sociolinguistics

sidesteps the problem of meaning equivalence by

identifying and studying the contexts in which a set

of linguistic forms are alternants without claiming

equivalence (Campbell-Kibler, 2011; Christensen

and Jensen, 2022). Nonetheless, we believe that

attempting to separate style and semantic meaning

has practical uses (see §2.2 or Weiner and Labov

(1983)).

Style across research fields Several fields study

linguistic style in some capacity. As discussed in

the paper, sociolinguistics examines the relation-

ship between language and society with a focus

on language change and variation (Eckert, 2008;

Labov, 1972). Corpus linguistics is the descrip-

tive study of how language is actually used by an-

alyzing text corpora (e.g. Biber, 1988; Biber and

Conrad, 2019). Typical applications might include

comparing language between different genres like

scientific papers and news articles. Forensic lin-

guistics involves the study of style in the context

of law and crime investigation and is typically in-

terested in recognizing a style or idiolect that helps

distinguish an investigated individual (Coulthard,

2004). Practical insights from forensic linguistics

also reciprocally influence stylistics and stylometry,

which more generally study linguistic style in lan-

guage. Stylometry applications include investigat-

ing the style of literary authors (Holmes, 1985) or

attributing disputed literary works (Burrows, 2002;

Mosteller and Wallace, 1963; Stamatatos, 2009).

Style in NLP has been investigated to character-

ize authors (e.g., age or gender in Koppel et al.,

2002; Nguyen et al., 2013), detect stylistic incon-

sistencies (Collins et al., 2004; Stamatatos, 2009),

and adapt styles in machine translation (Niu et al.,

2017, 2018; Rabinovich et al., 2017). Linguistic

style also plays a significant role in related fields

like psycholinguistics, or even in communication

and marketing, such as by influencing consumer

engagement (Munaro et al., 2024; ShabbirHusain

et al., 2023) and purchases (Ludwig et al., 2013).

Note that these fields are not strictly separable.

Methods from corpus linguistics can inform soci-

olinguistics, forensic linguistics can use methods

from stylometry, and so on. Further, there are sev-

eral fields that can be connected to linguistic style

that we do not specifically discuss here, such as

discourse analysis, digital humanities, linguistic

anthropology, and sociology.

D Additions to representing style in NLP

Available predefined feature extraction tools

There are a multitude of tools available that au-

tomatically extract predefined features from text.

The choice of tool and feature set, though, depends

on various factors, such as preferred programming

language, the nature of the data, and the goal of the

task. Therefore, best practice is to systematically

compare multiple feature sets, sometimes across

tools, for each specific use case. Python tools in-

clude but are not limited to spaCy (Honnibal et al.,

2020), Stanza (Qi et al., 2020), and NLTK (Bird

et al., 2019) for general text processing, PAN sub-

missions for authorship attribution (Weerasinghe

and Greenstadt, 2020) and style change detection

tasks (Strøm (2021), Zlatkova et al. (2018), LFTK

(Lee and Lee, 2023) for extracting numerous sty-

lometric features (but not n-grams), NeuroBiber

and BiberPlus (Alkiek et al., 2025) for extracting

Biber-style features, and StyloSpeaker (Aggazzotti

and Smith, 2025) for extracting speech transcript

features. Non-Python stylometric authorship tools

include Stylo in R (Eder et al., 2016) and JStylo

in Java (PSAL, 2013). Software that does not re-

quire programming includes LIWC (Pennebaker

et al., 2015), which groups words into linguisti-

cally and psychologically meaningful categories;

JGAAP (Juola et al., 2009) and Signature (Milli-

can, 2003), which extract stylometric and n-gram



features; and Coh-Metrix, which can measure more

complex features like text cohesion (Graesser et al.,

2004). We summarize these tools in Tab. 2.

Available automatically-learned models To the

best of our knowledge, the available learned style

representation models on HuggingFace are CISR22

(Wegmann et al., 2022), StyleDistance23 (Patel

et al., 2025), mStyleDistance24 (Qiu et al., 2025),

LUAR25 (Rivera Soto et al., 2021) and Multilin-

gual Style Representation26 (Kim et al., 2025). An-

other model available via a private sharing site is

LISA27 (Patel et al., 2023). Following the discus-

sion in §3.2, some style representationsmay capture

more semantic features than others, and thus may

prove to be more useful for different downstream

tasks. We summarize these models in Tab. 3.

D.1 Additions to the future of style

representations

Automatic feature selection

Future work could attempt to create strategies to

select predefined features that work best for differ-

ent kinds of data and objects of study or develop an

ensemble method that can select the best features

dynamically.

Including language modeling objectives

Previous work found that fine-tuning pretrained

transformer models on style tasks can curiously

lead to reduced performance on some style tasks

compared to the pretrained base model (Patel et al.,

2024; Wegmann and Nguyen, 2021). This might

be connected to a difference in the object of study

for the training and evaluation tasks. For exam-

ple, using individuals as the object of study (e.g.,

using authorship verification as the training task)

can lead to unlearning stylistic attributes that can

vary for the same individual (e.g., the formality of

their writing across online forums, job applications,

and other contexts). When aiming to learn general-

purpose style representations, it might be necessary

to include further stylistic or continued language

22https://huggingface.co/AnnaWegmann/Style-
Embedding

23https://huggingface.co/StyleDistance/
styledistance

24https://huggingface.co/StyleDistance/
mstyledistance

25https://huggingface.co/rrivera1849/LUAR-MUD
26https://huggingface.co/Blablablab/

multilingual-style-representation-Llama-3.2
27https://ajayp.app/posts/2023/11/learning-

interpretable-embeddings-via-llms/

modeling objectives like masked language model-

ing.

Improve content-independence

This was already mentioned in the main paper,

but we highlight this point for more clarity again.

“Generally, few style representations reach high

scores on content-independence ( App. Tab. 3)

andmight benefit frommore exhaustive content dis-

entanglement.”, see §4.1. Consider current content-

disentanglement strategies in §3.2.

E Additions to evaluating style

representations

Leverage measurement theory We give some

concrete examples of howmeasurement theory (

see Trochim et al., 2015) might be applied for style

embeddings and benchmarks. Measurement the-

ory can provide a theoretical framework that helps

make sure different important validity and reliabil-

ity aspects are considered in the evaluation of style

representations and style benchmarks.

For style embeddings, convergent validity (i.e.,

does the measure show similar measurement for

similar concepts?) might be assessed by testing

that texts that have a similar style have similar rep-

resentations. This could be done by perturbing texts

in stylistically inconsequential ways (e.g., by swap-

ping out named entities like “Maria has style.” to

“Emma has style.”) and comparing their embed-

dings. Discriminant validity (i.e., Is the measure

not sensitive to concepts it should not be related

to?) might be assessed by confirming that texts that

change in other aspects than style (e.g., content) are

still embedded similarly. This has been assessed

before by evaluating content-independence (§ 4).

Predictive validity (i.e., Can the measure be used

to predict something that it should be predictive

of?) might be assessed by evaluating performance

on downstream tasks that make use of style rep-

resentations, such as style classification or style

transfer tasks (§4). See also Fang et al. (2022)

for further inspiration.

For style benchmarks, reliability (i.e., Is the mea-

sure giving the same results with repeated mea-

surement?) might be improved by making sure

that the same seeds are used when applying the

benchmarks—for example, when using style clas-

sification tasks and a classifier is trained on top of

embeddings. See also Bean et al. (2025) for fur-

ther inspiration related to benchmark validity—for

example, they suggest to employ sampling strate-

https://huggingface.co/AnnaWegmann/Style-Embedding
https://huggingface.co/AnnaWegmann/Style-Embedding
https://huggingface.co/StyleDistance/styledistance
https://huggingface.co/StyleDistance/styledistance
https://huggingface.co/StyleDistance/mstyledistance
https://huggingface.co/StyleDistance/mstyledistance
https://huggingface.co/rrivera1849/LUAR-MUD
https://huggingface.co/Blablablab/multilingual-style-representation-Llama-3.2
https://huggingface.co/Blablablab/multilingual-style-representation-Llama-3.2
https://ajayp.app/posts/2023/11/learning-interpretable-embeddings-via-llms/
https://ajayp.app/posts/2023/11/learning-interpretable-embeddings-via-llms/


gies like stratified sampling that are representative

of the task space.

F Additions to what style representations

can enable

Disentangle internal representations It may be

useful to disentangle LLM-internal representations

of style to allowmodels to turn style information on

or off as needed. Disentanglement approaches have

helped cross-domain generalization (Yang et al.,

2023; Zheng and Lapata, 2022) and might also help

cross-style generalization. This can be especially

relevant for stylistic tasks (e.g., machine text de-

tection) that should rely on, and for semantic tasks

(e.g., reasoning) that should not rely on, style in-

formation (Wegmann et al., 2025). Disentangle-

ment might work especially well with mixture-of-

experts approaches (Artetxe et al., 2022), with style-

specific architectures (e.g., tokenizers) for relevant

experts.

Authorship attribution Style representations

can enable authorship verification and attribution

tasks, including historical authorship attribution of

disputed texts (Mosteller and Wallace, 1963), iden-

tifying harmful actors (Arabnezhad et al., 2020;

Saxena et al., 2025), detecting plagiarism in educa-

tional contexts (Elkhatat et al., 2023), and attribut-

ing speakers from speech transcripts (Aggazzotti

et al., 2024, 2025b; Tripto et al., 2023).

Considering style in annotations Human-

written texts and labels can include spurious

correlations as a result of annotation instructions

(Gururangan et al., 2018). Style representations

could be used to monitor the output of annotation

efforts, and ultimately, to distinguish instructions

that evoke more stylistically diverse annotations.

Bias identification and reduction As mentioned

(§ 1), language models are often biased against

certain styles, including those associated with

marginalized groups. Approaches detailed in §5.1,

like curating training and evaluation datasets with

more diverse styles, can improve performance

across styles and thus reduce model bias. Further,

it might be possible to use style representations to

identify biased behavior of a trained model: For

example, representations might be used to generate

(§5.2) or cluster texts of similar styles, enabling sys-

tematic comparisons of model performances across

style clusters.

Develop style measures With style measures we

mean the broader class of methods and metrics that

include style representations. One might, for exam-

ple, develop a metric that measures the formality

of a text, returning values between 0 and 1. Style

representations are similarly quantitative measures

of stylistic properties, but they typically encode (la-

tent) stylistic dimensions in a vector space. In this

study, we focus on style representations, but they

can be applied to develop style metrics.

F.1 Open questions in the application of style

representations

We add open challenges in the application of style

representations to different problems.

Circular evaluation in style transfer When per-

forming generative tasks conditioned on style rep-

resentations, such as authorship style transfer, dif-

ficulties can arise when comparing models. Var-

ious works (Horvitz et al., 2024a,b; Khan et al.,

2024) train authorship style transfer models with

the aid of style embedding models (§3.2) but also

evaluate the adherence to the target style using

style embedding models. When comparing two

systems like ParaGuide (Horvitz et al., 2024a) and

StyleMC (Khan et al., 2024), the former trained

with CISR embeddings (Wegmann et al., 2022)

and the latter with LUAR embeddings (Rivera Soto

et al., 2021), it remains unclear which embedding

space to use for evaluation without giving either

model undue advantage. We encourage the commu-

nity to investigate additional possibilities for evalu-

ation (e.g., based on predefined features, cf. §4.1)

or establish a standard representation for training

as well as evaluation.

Should we even care about styles for user-

facing LLMs? Some recent work shows that

more human-like outputs by LLMs might be dis-

preferred by humans and might lead to increased

anthropomorphism (Cheng et al., 2025; Sandoval

et al., 2025). This hints at a complex set of desider-

ata NLP researchers should consider when build-

ing LLMs and when using representations to steer

LLMs toward generating texts in different styles.

However, what style of output is preferred remains

highly contextual (i.e., dependent on the setting)

(Sandoval et al., 2025), and we believe that training

on stylistically diverse corpora remains essential

for LLMs to understand and engage with diverse

human styles.



G Intended use and licenses for used

artifacts

We only use models and datasets for motivating

examples in our survey. We discuss their licenses

and intended use below.

G.1 Datasets

s1k We use the s1k dataset provided by

Muennighoff et al. (2025) and accessed

at https://huggingface.co/datasets/
simplescaling/s1K-1.1. The dataset was

shared with an MIT license, which we adhere to.

MRPC We use the MRPC dataset pro-

vided by Dolan and Brockett (2005). The

dataset is available on the Microsoft website

at https://www.microsoft.com/en-us/
download/details.aspx?id=52398. No

license information is easily available. However,

it is a widely used and shared dataset, and the

paper mentions it is for the express purpose of

stimulating research.

Math500 We use the Math500 dataset pro-

vided by Lightman et al. (2023). It was shared

with an MIT license by OpenAI. See https://
github.com/openai/prm800k/.

ETS Corpus of Non-Native Written En-

glish We use the ETS Corpus of Non-Native

Written English (also known as TOEFL11

or LDC2014T06) provided by Blanchard

et al. (2014). It is accessed via the Lin-

guistic Data Consortium (LDC) at https:
//catalog.ldc.upenn.edu/LDC2014T06. The

dataset is distributed under a specific LDC user

license agreement restricted to non-commercial

research use, which we adhere to.

G.2 Models

CISR We use Wegmann et al. (2022)’s

CISR model at https://huggingface.co/
AnnaWegmann/Style-Embedding. No clear

license information is given, but the model was

published in a research paper encouraging further

use.

LUAR We use Rivera Soto et al. (2021)’s

LUAR model at https://huggingface.co/
rrivera1849/LUAR-MUD, shared with an Apache
2.0 license, which we adhere to.

SBERT We use an SBERT (Reimers and

Gurevych, 2019) semantic representation

model, https://huggingface.co/sentence-
transformers/all-mpnet-base-v2, shared

with an Apache 2.0 license, which we adhere to.

Mistral We use Jiang et al. (2023)’s Mistral-7B-

Instruct-v0.1 model, https://huggingface.co/
mistralai/Mistral-7B-Instruct-v0.1. The
model was shared with an Apache 2.0 license,

which we adhere to.

s1 models We use Muennighoff et al. (2025)’s

fine-tuned Qwen models on Gemini (https:
//huggingface.co/simplescaling/s1-32B)
and DeepSeek (https://huggingface.co/
simplescaling/s1.1-32B). Both models are

shared with an Apache 2.0 license, which we

adhere to.

H Identifying or offensive content in

datasets

We use small existing datasets only for motivating

examples (see §B). We do not release datasets. We

do not expect the used datasets (§G.1) to include

offensive content as they are reasoning datasets,

crowd-worker created paraphrases and TOEFL es-

says. However, the TOEFL essays might include

some personally identifying content. We did not

take steps to remove identifiable cues or offensive

content. We hope that the effect is negligible as the

datasets were already publicly accessible and we

only use them as motivating examples.

I Use of AI Assistants

We used ChatGPT, GitHub Copilot, and Claude

Code for coding, to look up commands, and to

generate individual functions for plotting. Gener-

ated functions were tested w.r.t. expected behavior.

We used AI assistants (mostly Claude and Chat-

GPT) for concise rephrasing and grammatical error

correction in writing. We used NotebookLM and

DALL-E to generate one figure based on specific

instructions including exact wording (see Appendix

Fig. 4).

https://huggingface.co/datasets/simplescaling/s1K-1.1
https://huggingface.co/datasets/simplescaling/s1K-1.1
https://www.microsoft.com/en-us/download/details.aspx?id=52398
https://www.microsoft.com/en-us/download/details.aspx?id=52398
https://github.com/openai/prm800k/
https://github.com/openai/prm800k/
https://catalog.ldc.upenn.edu/LDC2014T06
https://catalog.ldc.upenn.edu/LDC2014T06
https://huggingface.co/AnnaWegmann/Style-Embedding
https://huggingface.co/AnnaWegmann/Style-Embedding
https://huggingface.co/rrivera1849/LUAR-MUD
https://huggingface.co/rrivera1849/LUAR-MUD
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/simplescaling/s1-32B
https://huggingface.co/simplescaling/s1-32B
https://huggingface.co/simplescaling/s1.1-32B
https://huggingface.co/simplescaling/s1.1-32B


Type Variable Examples

PHONETIC postvocalic /r/ more or less clear pronunciation of /r/ sound after vowel (Labov, 1972)
intervocalic /t/ full/flapped /t/ voicing between two vowel sounds (writer → rider) (Bell, 1984)
...

MORPHO-

LOGICAL

word endings g-dropping (Campbell-Kibler, 2007), gerunds (Biber, 1988)

nominalizations ending in -tion, -ment
verb morphology be as a main or auxillary verb (Biber, 1988)
...

LEXICAL word/token counts number of words/tokens (Stamatatos, 2009)
word/token ratios ratio of types to tokens, ratio of short/long words to token count, etc. (Altakrori

et al., 2021)
word/token n-grams for n of various lengths (Abbasi and Chen, 2008; Stamatatos, 2009)
word length average word length (Biber, 1988), also cf. Grieve (2007)
sentence length distribution of average sentence length, cf. Grieve (2007)
vocabulary richness hapax (dis)legomena, Yule’s I/K, number of unique tokens (Abbasi and Chen,

2008; Stamatatos, 2009)
function words grammar-functioning words, e.g., the, be, to (Abbasi and Chen, 2008; Mosteller

and Wallace, 1963; Stamatatos, 2009)
pronoun use word frequency distributions of 1st, 2nd,... person pronouns (Biber, 1988; Pen-

nebaker et al., 2015)
hedge words at about, something like as hedges in Biber MDA features; maybe, perhaps in

tentative dimension in LIWC
quantifiers each, all as quantifier words or everybody, anybody as quantifier pronouns (Biber,

1988)
...

SYNTACTIC POS counts noun, verb, adjective,... (Abbasi and Chen, 2008; Biber, 1988)
POS n-grams for various n (Abbasi and Chen, 2008; Weerasinghe and Greenstadt, 2020)
passive voice agentless passives (Biber, 1988)
subordination features that relative clause vs. wh- relative clause (e.g., the dog that vs. the dog who)

(Biber, 1988)
negation need no water as negative concord (Eckert, 2008); not in analytic negation (Biber,

1988), negation words in LIWC
invariant be He be working (Rickford and McNair-Knox, 1994)
zero copula She nice (Rickford and McNair-Knox, 1994)
...

DISCOURSE contraction use can’t vs. cannot (contractions list1, Biber (1988))
discourse particle well, now (Biber, 1988)

readability Flesch Reading Ease, Flesch Kincaid Grade Level, etc. (Python’s textstat2)
compression train a compression model on one text and use it to estimate how similar in style

another text is, cf. Stamatatos (2009)
...

ORTHO-

GRAPHIC

character types hashtags, emojis, exclamation marks (Clarke and Grieve, 2017); uppercase
characters, digits (Stamatatos, 2009)

character n-grams for various n (Abbasi and Chen, 2008; Stamatatos, 2009)
lengthening cooool (Nguyen and Grieve, 2020)
number substitutions 2day (Crystal, 2008)

misspellings common misspellings list3

acronyms/abbreviations common shortened forms list4

...

1 https://en.wikipedia.org/wiki/Wikipedia:List_of_English_contractions
2 https://pypi.org/project/textstat/
3 https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
4 https://en.wikipedia.org/wiki/SMS_language

Table 1: Overview of predefined feature style operationalizations used in different fields. Specific linguistic

features that have been used to operationalize style and examples of each are categorized by linguistic level: phonetic

(i.e., pronunciation and sound patterns), morphological (i.e., word structure and inflection), lexical (i.e., word choice),

syntactic (i.e., sentence structure), discourse (i.e., larger structure), and orthographic (i.e., spelling and punctuation).

Note that the categorizations might overlap, e.g., g-dropping might also be considered an orthographic or phonological

variable, and character n-grams might encode different morphemes. These features have been investigated separately

(Campbell-Kibler, 2009) and collectively (e.g., Abbasi and Chen, 2008; Biber, 1988; Neal et al., 2017; Stamatatos,

2009). This table was inspired by and partially filled with elements from other tables of stylometric features in these

and other sources. For further references and examples consider also Grieve (2007) and Biber (1988).

https://en.wikipedia.org/wiki/Wikipedia:List_of_English_contractions
https://pypi.org/project/textstat/
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
https://en.wikipedia.org/wiki/SMS_language


Tool Original Purpose Language /

Platform

Type Link

spaCy
(Honnibal et al., 2020)

General text processing Python library github.com/explosion/spaCy

Stanza
(Qi et al., 2020)

General text processing Python library https://github.com/stanfordnlp/stanza

NLTK
(Bird et al., 2019)

General text processing Python library github.com/nltk/nltk

PAN 2020 AV
(Weerasinghe and
Greenstadt, 2020)

AV Python Task subm. github.com/janithnw/
pan2020_authorship_verification

PAN 2021 SCD
(Strøm, 2021)

SCD Python Task subm. github.com/eivistr/pan21-style-change-
detection-stacking-ensemble

PAN 2019 SCD
(Zuo et al., 2019)

SCD Python Task subm. github.com/chzuo/PAN_2019

PAN 2018 SCD
(Zlatkova et al., 2018)

SCD Python Task subm. github.com/machinelearning-su/style-
change-detection

LFTK
(Lee and Lee, 2023)

Stylometric feature ex-
traction (no n-grams)

Python library github.com/brucewlee/lftk

BiberPlus
(Alkiek et al., 2025)

Biber-style feature ex-
traction

Python library github.com/davidjurgens/biberplus

NeuroBiber
(Alkiek et al., 2025)

Biber-style feature ex-
traction

HF Model huggingface.co/Blablablab/neurobiber

MAT
(Nini, 2019)

Biber-style feature ex-
traction

Python library github.com/andreanini/
multidimensionalanalysistagger

StyloSpeaker
(Aggazzotti and Smith,
2025)

Speech transcript fea-
ture extraction

Python library github.com/caggazzotti/styloSpeaker

Stylo (R)
(Eder et al., 2016)

Stylometric authorship
analysis

R library github.com/computationalstylistics/
stylo

JStylo (Java)
(PSAL, 2013)

Stylometric authorship
analysis

Java App github.com/psal/jstylo

LIWC
(Pennebaker et al.,
2015)

Ling./psych. categories SW (GUI) App www.liwc.app/

JGAAP
(Juola et al., 2009)

Stylometric + n-gram
features

SW (GUI) App evllabs.github.io/JGAAP/

Signature
(Millican, 2003)

Stylometric + n-gram
features

SW (GUI) App www.philocomp.net/texts/signature.htm

Coh-Metrix
(Graesser et al., 2004)

Text cohesion and dis-
course features

SW (GUI) App soletlab.asu.edu/coh-metrix/

Table 2: Comparison of common tools for extracting predefined features The table summarizes their original

purpose, programming language or platform, type of resource, andURL. Abbreviations: AV = authorship verification,

Task subm. = shared-task submission, SCD = style change detection, HF = Hugging Face, App = standalone

application, SW = non-programming software. These tools particularly work for English, but see our Github for

tools/papers for other languages: https://huggingface.co/AnnaWegmann/Style-Embedding.

github.com/explosion/spaCy
https://github.com/stanfordnlp/stanza
github.com/nltk/nltk
github.com/janithnw/pan2020_authorship_verification
github.com/janithnw/pan2020_authorship_verification
github.com/eivistr/pan21-style-change-detection-stacking-ensemble
github.com/eivistr/pan21-style-change-detection-stacking-ensemble
github.com/chzuo/PAN_2019
github.com/machinelearning-su/style-change-detection
github.com/machinelearning-su/style-change-detection
github.com/brucewlee/lftk
github.com/davidjurgens/biberplus
huggingface.co/Blablablab/neurobiber
github.com/andreanini/multidimensionalanalysistagger
github.com/andreanini/multidimensionalanalysistagger
github.com/caggazzotti/styloSpeaker
github.com/computationalstylistics/stylo
github.com/computationalstylistics/stylo
github.com/psal/jstylo
www.liwc.app/
evllabs.github.io/JGAAP/
www.philocomp.net/texts/signature.htm
soletlab.asu.edu/coh-metrix/
https://huggingface.co/AnnaWegmann/Style-Embedding


Model Training Task Languages Content / Style Disentanglement Interpretable? Tasks

LUAR AV English Weak No AR, MTD
CISR AV English Medium No AV, MTD
StyleDistance AV English Strong No AV, ST
mStyleDistance AV Multiple Strong No AV, ST
LISA AV English Strong Yes Unknown
Multilingual Style AV Multiple Medium No AR, MTD

Table 3: Comparison of open-source learned style representation models The categorization is based on key

dimensions including the languages supported, the measured strength of content/style disentanglement, interpretabil-

ity, and the specific downstream tasks the models are have been found useful for. Note that the models may be useful

for more tasks than stated here, the analysis is based on the authors’ experience with them. Acronym Definitions:

AR = Authorship Retrieval, AV = Authorship Verification,MTD = Machine-Text Detection, ST = Style Transfer
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