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Abstract

Although representation learning has trans-
formed semantic modeling in NLP, representa-
tions of linguistic style remain underexplored—
partly due to conflicting definitions of style
within and beyond NLP or unclear immediate
advantages of separate style representations. In
this survey, we provide an overview of style
conceptualizations across different research
fields with a focus on NLP and (socio-)linguis-
tics and suggest a working definition of style
for practitioners. Then, we review methods for
creating and evaluating style representations.
We conclude by discussing how style represen-
tations can make crucial contributions to the
modern NLP pipeline (e.g., in dataset curation
or evaluation) and to the application of NLP
methods in other fields. Throughout our survey,
we sketch pressing open research questions in
the landscape of style representations, empha-
sizing the need for better evaluation approaches
and more comprehensive style representations.

1 Introduction

The Lego Grad Student! posted in July 2020,

Videoconferencing from his apartment
with his advisor, the grad student feels
like the victim of a home invasion.

Now consider a rephrasing by GPT-5.2 using the
Wikipedia-style prompt from Maini et al. (2024):
While conducting a videoconference with
his academic advisor from his apartment,
the graduate student experiences the in-
teraction as an intrusion into his private
living space.
The linguistic style of the original post (e.g., more
informal, compact) likely contributed to the 3k likes
itreceived. Style can affect a reader’s perception as

!The “Lego Grad Student” is an online creator that received
engagement on Twitter and Instagram with photos of LEGO
figures playing out scenes in a grad student’s life. This mes-
sage was posted during the COVID-19 pandemic.
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Figure 1: Semantic representations differ from style
representations We compare reasoning traces from
Muennighoff et al. (2025), generated with Gemini and
DeepSeck for the same reasoning problems. Style rep-
resentations can distinguish between the two models—
confirming results in Rivera Soto et al. (2023)—while
semantic representations overlap. See § B.1 for details.

it can, for example, influence engagement (Munaro
et al., 2024; Banerjee and Urminsky, 2025) and
change the persuasiveness of arguments (El Baff
etal., 2020; Parhankangas and Renko, 2017). More-
over, style also influences human quality ratings of
generated content’ (Cai et al., 2024; Wu and Aji,
2025) leading to one of our main takeaways: If you
care about LLMs, then style matters.

However, style is often disregarded in NLP. As a
result, language models can be brittle across (or not
robust to) style-like features: rephrasing prompts
in different styles leads to different performances
(Mizrahi et al., 2024; Wahle et al., 2024); LLM
judges can prefer long, formal, or synthetic texts
over relevance (Cao, 2025; Feuer et al., 2025; Wu
and Aji, 2025); machine translations sound older
and more male than the original (Hovy et al., 2020);
models are biased against non-majority varieties
(Fleisig et al., 2024; Hofmann et al., 2024; Liang
et al., 2023) and perform worse on non-standard
spellings (Ebrahimi et al., 2018; Li et al., 2019),
simple and informal styles, and genres like poetry
(Anschiitz et al., 2025; Cao, 2025; Qi et al., 2021;
Zhao etal., 2025). This brittleness might increase as
we train on more synthetic data (Guo et al., 2024).

ZPeople might prefer the style of certain LLMs over others,

e.g., Claude’s style over ChatGPT’s, or want to customize an
LLM’s style (OpenAl, 2025); see Personalization in §5.2.



Style representations (i.e., vectors with entries
that are optimized for style information) can help:
They can improve model robustness by supporting
the curation of stylistically diverse (post-)training
datasets, support text generation in and evaluate
adherence to a target style, help machine text de-
tection, and enable new tasks (e.g., retrieval of doc-
uments in a target style). In the social sciences and
humanities, they can support the analysis of literary
texts and style dynamics in dialogue. A detailed
discussion of these possibilities follows in § 5.

Semantic representations are often also sensitive
to style information as word prediction tasks also
need style information (Nguyen and Grieve, 2020;
Goldberg, 2019; Tenney et al., 2018; Miaschi et al.,
2020; Wegmann and Nguyen, 2021). However, we
believe that semantic representations alone are in-
sufficient for modeling style: They are usually not
evaluated on style-related tasks (Enevoldsen et al.,
2025; Muennighoff et al., 2023) and have limited
sensitivity to style (e.g., Mickus and Copot, 2024;
Zhang et al., 2023b). Most importantly, they are
trained to focus primarily on semantic information,
making it difficult to investigate the style of texts
separately from content (cf. Fig. 1).

In contrast to semantic representations, only a
few community-vetted and broadly tested methods
exist for representing the style of texts. The main
goals of this paper are to promote the wider adop-
tion of linguistic style representations within and
beyond NLP, guide practitioners towards key re-
sources, and highlight key challenges and research
directions in the study of style representations.

With this paper, we contribute:

* an overview of style definitions in linguistics

and NLP, including our own definition (§2)

* an overview of methods for representing (§3)
and evaluating (§4) style representations

* a discussion of why style representations are
useful for modern NLP and other fields (§5)

« % practical resources, ? open research ques-
tions, and 4\ calls to action (several sections)
« "% an expanding GitHub repository> collect-
ing datasets, tools, and other resources
Despite the significant attention given to style in
other modalities (e.g., speech), text-based NLP has
lagged behind, highlighting the need for this survey.
In line with this limited coverage, most of the work
we discuss focuses on English texts, but we urge

*https://github.com/AnnaWegmann/StyleSurvey/
and https://annawegmann.github.io/StyleSurvey/

the NLP community to consider more languages
and modalities in the future.

2 Style conceptualizations

Linguists often define style as a distinctive
pattern in language for some object of study
(e.g., for an author or group), while NLP
researchers often use “style” more loosely.

2.1 Style in linguistics

Researchers working with style often aim to de-
scribe a text’s structural linguistic features (i.e.,
how something is said) more so than its seman-
tic meaning* (i.e., what is said). However, some
linguistics researchers might disagree with such a
separation (see § C), finding that style and content
are intertwined, at least to some extent (cf. §2.3).
Studying style might then be understood as study-
ing what makes a phrasing distinctive within a set
of possibilities (Irvine, 2001), for instance, how
speakers use linguistic choices related to external
factors like social background, identity, or register.
Overall, we emphasize that style is an elusive term
that has been defined in many different, sometimes
inconsistent, ways in linguistics and other fields.”

What are the objects of study? Style is usu-
ally studied in a relative sense, as a distinctive dif-
ference between objects of study (Irvine, 2001);
however, these objects vary. In (socio-)linguistics,
style has often been discussed as inter-individual
variation—the idiosyncratic choices that poten-
tially distinguish individuals from each other,
often referred to as their idiolect (Coulthard,
2004)—and intra-individual variation (Bell, 1984;
Irvine, 2001; Labov, 2006; Meyerhoff, 2006; Wag-
ner, 2025)—the change in the same speaker’s lan-
guage across situations. Famously, Labov (1972)
discovered that individuals’ speaking style becomes
more formal as they pay more attention to their
speech and more casual as they pay less attention.
Sociolinguists have additionally studied style as
inter-group variation—differences in the language
of people identifying with different social groups
(Bell, 1984; Eckert, 2008; Irvine, 2001; Kristiansen,
2024). For example, g-dropping (going vs. goin’)

40r: referential meaning (Campbell-Kibler, 2011; Labov,
1972; Lavandera, 1978; Nguyen et al., 2016, 2021). Two
variants have the same referential meaning if they are the
same in a truth-conditional sense (i.¢., true in exactly the same
situations), while the “social” or “stylistic significance” might

differ considerably (Labov, 1972; Weiner and Labov, 1983).
>See § C for an overview of other areas interested in style.
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may indicate a person’s association with a southern
U.S. region (Campbell-Kibler, 2007).

Genres and registers (or domains) have also been
objects of style research (Biber and Conrad, 2019;
Grieve, 2023). Literature from a historical period,
novels by a specific author, news reports, and blogs
can display very different linguistic patterns, which
might be called the style of that historical period,
literary author, news report, or blog (Biber and Con-
rad, 2019; Grieve et al., 2011; Hicke and Mimno,
2025; Irvine, 2001).

Researchers have considered more objects of
study than we discuss, like the communication envi-
ronment (e.g., speech before a crowd or a courtroom
in Ervin-Tripp, 2001) or the communicative manner
(spontaneous vs. read speech in Williams and King,
2019). Researchers can also study combinations of
these objects (e.g., courtroom speeches by one indi-
vidual) or an object only in certain contexts (e.g., a
social group discussing a certain topic). For exam-
ple, Holliday (2021) finds that biracial Black men
displayed fewer African American® intonational
features when discussing police narratives.

What is the function of style? Style might also
be defined as patterns in language tied to a spe-
cific function. Some scholars argue that style is
fundamentally embedded in social meaning, index-
ing social background and shaping social identity
(Campbell-Kibler et al., 2006; Coupland, 2007;
Eckert, 2008, 2012). For example, Labov (1972)
found that differences in the pronunciation of /r/ cor-
related with social class, and Eckert (1989) found
that self-identified “burnouts” at a Detroit school
used more non-standard linguistic features (e.g.,
gonna) than college-bound “jocks” (e.g., going to).

Labov originally viewed a speaker’s vernacular
as a reflection of their social identity, not an active
choice (Labov, 1972). More recent sociolinguistic
approaches see style as more agentive—not only re-
flecting identity but also performing and construct-
ing it (Eckert, 2012). For example, the development
of linguistic practices of trans activists can be tied
to their agency in creating identity (Zimman, 2019),
and speakers may choose styles for performative
functions like getting attention (Ervin-Tripp, 2001).

SWhile several linguistic features can describe both styles
and dialects, dialects are typically not called styles but distinct
types of language variation more clearly tied to speakers’ so-
cial backgrounds and geographic regions (Biber and Conrad,
2019; Grieve et al., 2025). Nonetheless, some researchers also
consider dialects as a kind of social style (Coupland, 2007).

We do not specifically exclude dialects in our definition (§2.3),
but our focus remains on non-dialectal stylistic variation.

Style can serve communicative functions in an
interaction (Coupland, 2007): Speakers may align
with (accommodate) or distance themselves from
the style of interlocutors or audiences (Bell, 1984;
Giles and Powesland, 1975; Giles et al., 1991;
Khaleghzadegan et al., 2024), thereby shaping so-
cial relationships and interactions (Coupland, 2007).
For example, Bell (2014) found that New Zealand
newscasters shifted their pronunciation when talk-
ing to audiences of higher or lower status.

Finally, some consider style to be aesthetic, with
no or limited function, and instead prefer the term
register for varieties of language associated with
a particular situational context (Biber and Conrad,
2019). When considering register as style, style
might serve further functions like structuring dis-
course and fulfilling communicative purposes.

2.2 Style in NLP

Some work in NLP uses the term style in ways
broadly consistent with linguistics, aiming to study
formal/informal styles and literary authorial styles
(e.g., Jhamtani etal., 2017; Rao and Tetreault, 2018;
Wegmann and Nguyen, 2021); however, others in-
creasingly use style as an umbrella term for general
attributes of texts that vary across datasets (Jin et al.,
2022) such as the sentiment of a text (Reif et al.,
2022; Shen et al., 2017), but do not necessarily
align with a typical linguistic definition of style.

Separating content and style As in linguistics
(§2.1), work in NLP finds that content and style
are often correlated (Jafaritazehjani et al., 2020;
Mikros and Argiri, 2007). Still, separating style and
content tends to be a natural distinction for many
NLP applications. Specifically, NLG systems have
to fundamentally determine what information to
generate—the knowledge, or message—and what
style to generate it in (Gatt and Krahmer, 2018).
While neural NLG systems often handle content and
style implicitly, generating texts end-to-end without
explicit planning stages, the distinction between
style and content remains useful in practice, for
example, when curating datasets, rephrasing and
adapting texts, or evaluating the factual correctness
of model outputs (§5).

2.3 A working definition for style in NLP

We propose a working definition of style for NLP
practitioners.” Throughout the paper, we consis-

"Our definition does not specifically exclude concepts like
dialects, registers, or varieties for practical reasons: (i) the



tently use the same colors for the same concepts.

~

Definition A linguistic style consists of dis-
tinctive patterns in language use for an
object of study (e.g., individuals, a group
of authors in a given register) in its lexical,
syntactic, morphological, orthographic, dis-
course, phonetic, etc. composition. These
patterns should not chiefly measure, but can
correlate with, semantic meaning.

For example, a person discussing American
football might talk more casually than when dis-
cussing ballroom dance, yet some underlying lin-
guistic features may remain consistent in both sit-
uations and carry social meaning (§2), e.g., about
the speaker’s upbringing. When studying style,
we might study the differences or commonalities
between discussing American football and ball-
room dance, depending on the object of study, i.e.,
whether we are currently interested in a specific
individual, demographic, situation, etc.

3 Representing style

Linguistic style is usually operationalized
with patterns in linguistic features like func-
tion words or automatically-learned repre-
sentations like neural text representations.

3.1 Predefined features

Style is often operationalized as the systematic
variation of linguistic features, which can span var-
ious linguistic levels including morphology, or-
thography, syntax, and discourse (Biber and Con-
rad, 2019; Crystal and Davy, 1969; Grieve, 2007,
Kniffka, 2007; Labov, 1972; Neal et al., 2017; Sta-
matatos, 2009). 4, App. Tab. 1 gives example
features (e.g., g-dropping) at each level; ™, §D lists
tools for extracting predefined features. The pri-
mary appeal of predefined features is that they are
supported by linguistic theory, have been tested ex-
tensively, and are generally interpretable (i.e., have
ameaning understandable to humans). The features
can be used with statistical approaches like logistic
regression or dimensionality reduction with factor
analysis to determine how important each feature is.
This transparency is especially important in high-
stakes settings, such as forensic linguistics, where

separation between such terms is not consistent in linguistics,
and (ii) computational style representations are commonly
expected to be sensitive to dialect, register, and variety in-
formation (§4). We leave further practical disentanglement
between style and other terms for future work.

it is crucial to explain a model’s decision-making
process (Argamon, 2018; Grant, 2022).

One such feature-based style operationalization
is stylometry, which measures the frequencies of
linguistic features that help discriminate between
author styles. There is no fixed set of features that
work for every individual, despite much work at-
tempting to find one (Juola, 2006; Nini, 2023); in-
stead, the features often depend on the nature of the
data (e.g., genre, register, amount of data, language)
(Argamon, 2018). Nonetheless, function words
(i.e., words like prepositions and conjunctions that
primarily serve a grammatical role) and character
n-grams (i.e., n successive characters), in particu-
lar, have proven quite effective at discriminating
authors (Grieve, 2007; Houvardas and Stamatatos,
2006; Peng et al., 2003; Kestemont, 2014; Mosteller
and Wallace, 1963) and speakers (Aggazzotti and
Smith, 2025; Aggazzotti et al., 2024; Doddington,
2001; Sergidou et al., 2023; Tripto et al., 2023).
N-grams, whether character, token/word, or part-
of-speech tag n-grams, are also beneficial because
they work across many languages.

Other feature operationalizations serve differ-
ent purposes related to style. For example, Mul-
tidimensional Analysis (MDA) (Biber, 1988) is
used to determine how texts differ in their com-
municative function and originally relied on mostly
grammatical category-related features (e.g. nouns,
verbs); however, modern extensions (e.g., Clarke
and Grieve, 2017; Grieve et al., 2011) additionally
include more complex features, such as syntactic
constructions and semantic classes.

3.2 Automatically-learned features

By automatically-learned features or embeddings,
we mean vector representations of text produced
by (usually neural) models. In contrast to prede-
fined features, automatically-learned features do
not rely on specific, established features but can
automatically discover style patterns. Further, they
often perform better than predefined features on
downstream tasks, but are usually less interpretable.
Because it is difficult to operationalize definitions
of style, models are usually optimized in proxy
downstream tasks, such as authorship verification
or style transfer. 4, See §D for links to models.

Authorship verification The most popular ap-
proach to date trains models with a contrastive ob-
jective (Dong and Shen, 2018; Khosla et al., 2020)
to learn representations where two text samples are



close together in vector space if they are written by
the same author and far apart otherwise (Andrews
and Bishop, 2019; Khan et al., 2021; Kim et al.,
2025; Man and Huu Nguyen, 2024; Rivera Soto
et al., 2021; Sawatphol et al., 2022; Thakrar et al.,
2025; Wang et al., 2023; Wegmann et al., 2022).
Representations trained on this task have been
shown to capture stylistic information (Wang et al.,
2023; Wegmann and Nguyen, 2021).

Since training datasets may contain undesired
correlations—for example between style and con-
tent when an author only writes about one topic—
some work creates harder positive (i.e., same au-
thor) and negative (i.e., different author) pairs to
improve disentanglement (Man and Huu Nguyen,
2024; Patel et al., 2025). For example, Wegmann
et al. (2022) use negative pairs that are approxi-
mately about the same topic, and Patel et al. (2025)
leverage LLMs to create a synthetic dataset of near-
exact paraphrases by varying predefined features.
Building on such disentanglement strategies, recent
work generalizes style representations to multilin-
gual settings (Kim et al., 2025; Qiu et al., 2025),
where negative pairs must be carefully constructed
to avoid trivial cross-lingual differences.

Style transfer Another line of work learns repre-
sentations via style-transfer, aiming to rewrite text
for a stylistic attribute without altering its semantic
meaning (Cheng et al., 2020b; John et al., 2019;
Shen et al., 2017; Zhu et al., 2024). For instance,
a model may be trained to convert formal text into
informal text, conditioned on both the input and an
embedding of the target style. Under this objective,
embeddings learn features indicative of informality.

These methods usually rely on explicit style-
content disentanglement and tend to learn repre-
sentations that are more narrow in scope, often tied
to single attributes (e.g., politeness) or differences
between two corpora (Shen et al., 2017). John et al.
(2019) train an auto-encoder to produce a style and
a content vector, imposing a style classification loss
on the style representation and an adversarial style
classification loss on the content vector. Cheng et al.
(2020b) minimizes the estimated mutual informa-
tion between the style and content representations.

Interpretable LLM-guided stylometry A dis-
tinctive method is LISA (Patel et al., 2023), which
learns embeddings where each dimension is an in-
terpretable feature (e.g., use of an elongated word).
The authors create a synthetic dataset by prompt-
ing GPT-3 for stylometric features, then train an
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Figure 2: By-product of authorship verification train-
ing Stylistic representations, though trained on the “id-
iolectal” authorship verification task, cluster TOEFL
(Test of English as a Foreign Language) essays by the
native language of the writer. See §B.3 for more details.

EncT5 (Liu et al., 2022) model to predict the pres-
ence of each feature in a text sample. Because dis-
tances in this space are not well-defined, they fit a
linear transformation on the authorship verification
task. LISA is the first method to use LLM-based au-
tomatic labeling for style representations, offering
a middle ground between hand-crafted features de-
rived by human experts and automatically-learned
representations. However, limitations of LLMs
might need to be considered (§1, §5.1).

3.3 The future of style representations

I 4@\ Define what we want to represent
Training representations on the authorship veri-
fication task implicitly defines style as the idiosyn-
crasies exhibited by authors in certain corpora (Zhu
and Jurgens, 2021). However, because the con-
trastive dataset might never pair authors from the
same social group as negatives, a representation
may inadvertently primarily encode group-level
features. Indeed, we find that various “idiolectal”
style representations encode features discriminative
of writers’ native language in Fig. 2. We call on the
community to explicitly define their object of study
(e.g., idiolect, cf. §2.3), use learning approaches
like hard negatives to control for other concepts
(e.g., variation within the same social group), and
evaluate whether representations primarily capture
variations for the defined object of study.

I 7 Build general-purpose style embeddings

It remains an open challenge to learn general-
purpose style embeddings that cover as many ob-
jects of study as possible and are, for example,
sensitive to individual, group, register, and time



period variation at the same time. For this, new
training objectives could explicitly target different
objects of study. Using multiple objectives might
require stronger disentanglement objectives, for ex-
ample, based on minimizing mutual information of
two representations (Cheng et al., 2020a), adversar-
ial objectives (John et al., 2019), or by employing
VAE:s to explicitly disentangle between syntax and
semantics (Chen et al., 2019; Bao et al., 2019).

I ? Improve training

There are several other areas in training that
remain underexplored. For example, fine-tuning
newer encoder models like ModernBERT (Al-
shomary et al., 2025b), designing tokenizers specif-
ically for style representations (Wegmann et al.,
2025), and pooling not only the last, but several
or all, encoder layers might improve performance
(Alshomary et al., 2025b).

I ? Construct interpretable embeddings

An open question is how to learn representa-
tions with interpretable dimensions that are still
as performant as their uninterpretable counterparts.
Such work may benefit from sparse autoencoders—
which have recently been shown to automatically
learn interpretable features (Huben et al., 2024)—or
from combining predefined features with neural
training—for example, by training models to clas-
sify predefined features (cf. Alkiek et al., 2025).

4 Evaluating style representations

To develop better style representations, we
must be able to compare and evaluate them,
but no standard currently exists.

4.1 Previous approaches

We divide evaluation approaches according to our
definition of style (§2.3), grouping them into pre-
defined features, objects of study—including au-
thorship verification—and content-independence.

On predefined features Learned representations
(§3.2) can be evaluated on their sensitivity to prede-
fined features (§3.1). Various studies use probing
classifiers (Adi et al., 2017; K6hn, 2015) as well
as recurrent/recursive neural networks (Belinkov
et al., 2017; Shi et al., 2016) to assess which lin-
guistic features are captured by representations. For
example, Alshomary et al., 2025b probe style rep-
resentations on morphology and syntax. However,
probing has limitations, such as uncertainty over

how to interpret classifier performance (Belinkov,
2022). Other approaches are sparse, but include
studying performance loss on style tasks when re-
moving syntactic and discourse information from
texts via shuffling (Zhu and Jurgens, 2021) and
evaluating the cosine similarity between texts that
include the same predefined features like contrac-
tion usage or use of passive voice (Patel et al., 2025;
Wegmann and Nguyen, 2021).

On objects of study Representations have also
been evaluated for their ability to classify common
objects of study (§2), including probing and clas-
sifying (i) literary authors (Wang et al., 2023), (ii)
book genres (Maharjan et al., 2019), (iii) registers
(Alkiek et al., 2025), and (iv) demographic informa-
tion of authors like gender or age (Ding et al., 2019;
Kang et al., 2019; Kang and Hovy, 2021). Other
work examines whether representations of formal/-
complex texts are similar to other formal/complex
texts (Wegmann and Nguyen, 2021). Further, Ter-
reau et al. (2021) use representations to predict an
author’s distribution on predefined features.

Authorship attribution Many works evaluate
style representations according to their useful-
ness for authorship attribution or verification tasks
(Alkiek et al., 2025; Ding et al., 2019; Maharjan
et al., 2019; Patel et al., 2025), including testing
whether a representation clusters documents by the
same author together (Hay et al., 2020). Datasets
and domains like e-mails, blogs, Reddit, Amazon
Reviews, Yelp reviews, fanfiction, or shared PAN
tasks® from the years 2011-2025 (Argamon and
Juola, 2011; Bevendorff et al., 2025a) are com-
monly used. 4, See Huang et al. (2025) and our
GitHub page for a collection of typical datasets.
Recently, transcribed spoken domains, such as tele-
phone conversations, interviews, speeches, and
podcasts, have also been used (Aggazzotti et al.,
2024, 2025b; Tripto et al., 2023). However, without
careful preparation, datasets might contain named
entities, leakage between train and test sets (Brad
et al., 2022; Sawatphol et al., 2024), or spurious
correlations with topic (Wegmann et al., 2022),
making performance less interpretable. There are
promising contributions tackling such issues, like
Israeli et al. (2025) and Khan et al. (2021), who
provide large sets of authors across different top-
ics on Wikipedia and Reddit, Tripto et al. (2023),
who provide speech transcripts across various reg-

84 https://pan.webis.de/shared-tasks
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isters and topics, and Tyo et al. (2022) who design
a benchmark across domains for authorship attri-
bution and verification. However, researchers typi-
cally use a differing selection of tasks, data, domain
combinations, or splits, making performance scores
incomparable across different studies.

Content-independence Even though it is debat-
able whether linguistic style generally excludes con-
tent information (§2), style representations are com-
monly tested on “content-independence”. This has
been evaluated by studying the loss of performance
on style-related NLP tasks (like authorship verifi-
cation or attribution) when masking out less fre-
quent words or “content words” (Stamatatos, 2017;
Wang et al., 2023; Zhu and Jurgens, 2021) or when
changing the style of a text with an automatic para-
phraser (Wang et al., 2023). Other approaches test
whether style representations are more sensitive
to style changes than to content changes (Weg-
mann and Nguyen, 2021; Wegmann et al., 2022),
whether they can distinguish speakers discussing
the same conversational topic (Aggazzotti et al.,
2024, 2025b), and whether they perform poorly
on semantic tasks like topic classification (Wang
et al., 2023). Generally, few style representations
reach high scores on content-independence (™
App. Tab. 3) and might benefit from more ex-
haustive content disentanglement.

4.2 The future of style evaluation

I @\ Increase interpret- and explainability

The evaluation of learned style representations
on predefined features is not yet systematic, but
is promising to pursue, as it can build on rich lit-
erature in linguistics and stylometry (§2.1, §3.1)
and can help make learned representations more in-
terpretable. Further, there is only limited work on
explaining learned style spaces. Alshomary et al.,
2025a pioneer this direction by generating explana-
tions on why embeddings cluster certain authors.

I '7 Leverage measurement theory

In the social sciences, measures are commonly
assessed for reliability (do measures return the
same result with repeated measurement?) and va-
lidity (do measures capture the concept of interest?).
Measurement theory could provide the evaluation
of style embeddings and the construction of style
benchmarks with a theoretical framework, highlight
gaps, and provide inspiration for future methods.
*., See Trochim et al. (2015) for more on measure-

ment theory. See Fang et al. (2022) for examples of
how to apply measurement theory to embeddings
and Bean et al. (2025) for recommendations on how
to construct valid benchmarks. We give examples
of how measurement theory might be applied for
style embeddings and benchmarks in App. §E.

I 4\ Develop standard benchmarks

Only a few contributions aim to systematically
evaluate representations on linguistic style, leav-
ing this area of research behind semantic embed-
dings and approaches like MTEB (Enevoldsen et al.,
2025; Muennighoff et al., 2023). We discuss some
notable pioneers: Kang and Hovy (2021) collected
the largest dataset to date for style classification;
however, several of their classes (e.g., sentiment)
would not be considered style in linguistics. Fur-
ther, STEL (Wegmann and Nguyen, 2021) is a
theory-driven benchmark on single linguistic prop-
erties and broader style categories that evaluates
representations with cosine similarities—thus not
needing training. Neither approach covers a wide
range of styles or domains or clearly defines an ob-
jectof study (cf. §2.3). Providing an open, easily ac-
cessible, high quality, and diverse style benchmark
spanning multiple objects of study like registers
and authors would be a significant contribution.

5 What style representations enable

Style representations can make crucial con-
tributions to the modern NLP pipeline and
to applications of NLP methods.

We provide a selection of examples of what style
representations can enable. We list a few more in
§F, including authorship attribution, bias reduction,
reducing spurious correlations in annotations, and
improving generalization across styles.

5.1 An improved NLP pipeline

I @\ Curate multi-stage training datasets
LLMs are often not robust to stylistic variation
(§ 1). Manipulating and diversifying the style of
texts in in-context learning (ICL) examples as well
as pre- and post-training datasets—for example, by
stratified curation or rephrasing in different styles—
has helped output diversity and performance across
stylistic variation (Chen et al., 2024b; Lambert et al.,
2025; Levy etal., 2023; Maini et al., 2024). Curricu-
lum learning or multi-stage training found increased
success recently (OLMo et al., 2025; Ettinger et al.,



2025; Allal et al., 2025). We believe that style rep-
resentations can be a crucial tool to monitor the
overall stylistic diversity of a dataset (cf. Nguyen
and Ploeger, 2025) and can help select data points
for training that increase or decrease stylistic diver-
sity according to a curriculum. Further, they can
help rephrase texts in other styles (cf. Maini et al.,
2024) using style transfer methods (§5.1) and select
datapoints that align with a target style in ICL and
(post-)training datasets.

I 4\ Diversify style in evaluation datasets

Both style and content influence human prefer-
ence judgments (Cai et al., 2024; Chen et al., 2024a;
Singhal et al., 2024; Tianle Li, 2024). However,
state-of-the-art performance is often established
only on content tasks (mostly NLU and reason-
ing) using texts with limited stylistic variation (Guo
et al., 2025; Truong et al., 2025). This might obfus-
cate a model’s ability to generalize to other domains
or understand and generate diverse or preferred
styles.’ Instead, benchmarks could be composed
not only based on what they test, but also based on
whether their datasets or tasks cover different or
expected regions of the style embedding space.

5.2 Various other applications

Generating in specific styles Representations of
style can help generate text in a specific style, or
adapt to different domains (Horvitz et al., 2024a,b;
Liu et al., 2023; Zhang et al., 2023a). Such style
steering approaches can enable accessibility in lan-
guage generation (Anschiitz et al., 2025; Cao et al.,
2020; Surya et al., 2019)—for example, by simpli-
fying a text for a child or summarizing a text for
a non-expert. The style of generated texts is often
evaluated by comparing their style representations
to those of a target style (Chim et al., 2025; Horvitz
et al., 2024a; Jangra et al., 2025; Liu et al., 2023).

Personalization Interest in personalized model
responses has grown recently (Zhang et al., 2025b;
Liuetal., 2025). Style plays a crucial role in person-
alization (Zhang et al., 2025b; Liu et al., 2025), and
style representations could be used to recognize the
style of humans, infer their preferences, and adapt
generated responses to them (Zhang et al., 2025a).

Machine text detection There is a growing con-
cern about the misuse of LLMs, including disinfor-
mation, spam, and plagiarism. Recent work (Beven-

For example, textbooks might not be all you need (cf. Li
et al., 2023) for perplexity across registers (Maini, 2023).

dorff et al., 2025b; Elkhatat et al., 2023; Gehrmann
etal., 2019; Kumarage et al., 2023; Sun et al., 2025;
Uchendu et al., 2020) shows that LLMs exhibit id-
iosyncrasies that distinguish their writing from hu-
man writing. Detectors that use style embeddings
have been effective in in-domain and cross-domain
settings (Kim et al., 2025; Rivera Soto et al., 2023).

Privacy On the flip side of attribution and detec-
tion is the task of obfuscating someone’s identity.'”
Style representations can help determine if text that
has been anonymized, such as via paraphrasing, suf-
ficiently removes someone’s style and protects their
privacy (Aggazzotti et al., 2025a; Alperin et al.,
2025; Bao and Carpuat, 2024; Shokri et al., 2025).

I 4@\ Push style representations as a founda-

tional method for NLP and other fields
Just as semantic embeddings have become foun-

dational, style representations could also be foun-
dational across fields. Next to the mentioned uses,
they could help retrieve documents with a (dis-)sim-
ilar style to a search query (Cao, 2025), track style
shift in dialogue in sociolinguistics (Nguyen, 2025),
or analyze literary text in the digital humanities
(Hicke and Mimno, 2025), with current embeddings
already seeing significant adoption.'!

6 Conclusion

With this paper, we hope to have demonstrated
the potential of style representations for the NLP
community. We call on researchers to use clearer
definitions of style, to more explicitly disentangle
evaluation and training approaches, and to develop
evaluation methods into a standard. We end by not-
ing that style has unique properties that may require
unique considerations and methodologies. Among
these, the style of a text is inherently relative. For
example, it might be clearer and more relevant to
judge if a text (e.g., How are you?) is more formal
than another (e.g., What’s up?) rather than if it is
formal in isolation; consider also App. Fig. 3 and
Irvine (2001). This relativity may require new so-
lutions in training and evaluating representations—
for example, curating training data with hard pos-
itives and negatives positioned in relation to each
other, or testing whether representations correctly
rank sentences along a stylistic dimension.

For example, see the PAN Author Masking series
at https://pan.webis.de/shared-tasks.html#author-
masking.

"https://huggingface.co/AnnaWegmann/Style-
Embedding reached 200k downloads in October 2025.
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Limitations

4@\ Consider style in modalities other than

text.
Many of the examples and citations throughout

this paper refer to text-based style since the lim-
ited style research in NLP has focused on written
language, but linguistic style also manifests, and
is perhaps better studied, in other modalities like
speech (e.g., tone of voice), gestures, and vision
(e.g., image generation). We leave considerations
for representing style in other modalities for future
work.

4@\ Give more attention to style in languages

other than English.

The bulk of the work we discuss considers style
in English. For example, we mainly discuss def-
initions of style considered by American schol-
ars (cf. §2.1), and we discuss predefined features
mainly for English (cf. § 3.1)—for instance, “g-
dropping” is an English-specific marker. Different
scripts and languages will usually need different
predefined features and have a different history
regarding style definitions and sociolinguistic re-
search (see also Ball et al., 2023). However, our
discussed approaches to automatically learn and
evaluate representations should largely transcend
languages and scripts as long as architectural com-
ponents (e.g., tokenizers), evaluation datasets, and
predefined features are adapted for optimal perfor-
mance. We believe that developing style represen-
tations for languages other than English is a crucial
future step and call on the community to continue
pioneering work like Kim et al. (2025) and Qiu et al.
(2025).

Why not use a different term instead of style?

...the extremely broad and ambiguous ref-
erence of the term [style] in everyday use
has not made its status as a technical lin-
guistic term very appealing.

— David Crystal

Scholars, such as Crystal (2011), have argued
against using the term style at all due to its increas-
ingly vague and colloquial use. Instead, researchers
have opted to describe the specific phenomenon
they are interested in (e.g., syntactic variation) and
use less over-defined terms (e.g., language varia-
tion). While that can be helpful in some cases, we
argue that using the term style is still worthwhile
because (i) the term is used regularly in NLP (with

200 publications in the ACL Anthology mentioning
“style” in the title or abstract in 2024) highlighting
the interest in the term; (ii) style seems to provide
a more concise and intuitive label than alternatives
like “distinctive patterns in the used language vari-
eties” or “systematic variation in textual features”;
and (iii) the term style can draw from decades of
theoretical foundation in stylometry and sociolin-
guistics.

Style is a concept used in many fields. Why fo-
cus on the ones discussed in the paper? Next
to NLP, we focus on definitions and concepts of
style used in sociolinguistics, linguistics, stylome-
try, forensic linguistics, and corpus linguistics (§2,
see an overview of the fields in § C). To the best
of our knowledge, these are the most active areas
already using, or intuitive areas that could profit
from using, computational methods for analyzing
style. Further, we believe that sociolinguistics is
particularly relevant to consider, as its study of
the interaction between language and society has
unique potential to inform NLP methods (Nguyen,
2025), especially as NLP models are increasingly
used within, and have growing impact on, society.

Ethical considerations

Style modeling is closely related to author profiling
(cf. §4)—the task of recovering author character-
istics based on the text they wrote (Nguyen et al.,
2013; Rangel et al., 2013). Note that author pro-
filing can be useful for improving performance on
some NLP tasks (Hovy, 2015); however, identify-
ing an author’s gender, age, personality type, etc.
has increasingly been criticized for bias and pri-
vacy concerns (Brennan et al., 2012; Elazar and
Goldberg, 2018; Li et al., 2018; Lison et al., 2021).

Integrating more language diversity, and with it
social factors, into NLP is a double-edged sword:
There are clear advantages to integrating more di-
versity into NLP models and, specifically, repre-
senting minorities to increase the fairness and rep-
resentativeness of NLP models (Bird and Yibarbuk,
2024; Grieve et al., 2025; Hovy and Yang, 2021;
Markl et al., 2024); however, making NLP models
more sensitive to social factors could also make
them a threat to privacy across social groups. The
performance of machine learning approaches on
tasks like author profiling could increase, resulting
in a large potential for misuse, such as the following
examples: (1) Author profiles could be used to iden-
tify and profile individuals or political dissenters



(Hovy and Spruit, 2016); (2) Author profiling could
be used for predatory ad targeting, which might
show gambling ads to vulnerable groups or not
show job postings to certain social groups (Dudy
et al., 2021); and (3) Author profiles could lead
to data leakage, such as making health conditions
recoverable for insurance companies that might in-
crease their rates for certain individuals (Dudy et al.,
2021).

This conflict between privacy and fairness has
been described as one of the “dual-use problems”
in NLP by Hovy and Spruit (2016). We aim to
improve fairness without compromising individual
privacy and safety but acknowledge that progress
in one might sometimes come at the expense of the
other. #\ Therefore, we encourage researchers in
the NLP community to engage with the dual-use
problem more actively and work on techniques to
make the design of language models more sensitive
to human values, as suggested in Dudy et al. (2021),
ideally without actively working on approaches to
make sensitive data recoverable from texts. We fur-
ther encourage researchers to actively anonymize
datasets used for modeling and the evaluation of
style representations.

We confirm that we have read and abide by the
ACL Code of Ethics. Besides those mentioned, we
do not foresee immediate risks of our work.
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Figure 3: Style is relative. It might be more difficult or
less interesting to make categorical judgments about a
text’s style in isolation than, for example, judging if a
text is more formal than another on a formality contin-
uum. As Irvine (2001) writes on page 22, “It is seldom
useful to examine a single style in isolation” and “atten-
tion must be directed to relationships among styles—to
their contrasts, boundaries and commonalities.”

A Additional figures and tables

Fig. 4 provides a visual organization of the structure
of this survey paper, Tab. 1 shows an overview of
various predefined feature style operationalizations
(§3.1), and Fig. 3 portrays an example of why style
may require new solutions (§6).

B Motivating examples

B.1 Reasoning traces in the s1 dataset

We created Fig. 1 using the first 500 elements of the
s1 datasets provided by Muennighoff et al. (2025)
with reasoning traces generated by Gemini Flash

Thinking Experimental and DeepSeek R1.!12 We
used a semantic representation model'3 and a style
representation model'* and UMAP (MclInnes et al.,
2018) with default settings.

Pioneering work found that the style of reason-
ing traces might be important to consider for the
performance of reasoning models (Lippmann and
Yang, 2025). Note, however, that their definition
of style does not fully align with the definition used
in this paper (e.g., including “non-linear thinking”
as a style). In an ablation, we compare the seman-
tic and style representations of the DeepSeek and
Gemini teacher models and the distilled Qwen mod-
els on DeepSeek and Gemini. While the original
Muennighoff et al. (2025) paper trains Qwen mod-
els only on Gemini reasoning traces, the authors
later experimented with DeepSeek reasoning traces
and found them to lead to better performance.!> We
take the first 270 s1 reasoning traces as provided by
Muennighoff et al. (2025) and use the fine-tuned
Qwen models on Gemini'® and DeepSeek'” reason-
ing traces to generate reasoning traces'® for the first
270 Math500' problems (Lightman et al., 2023).
We use a different dataset from sl to query student
models to avoid artifacts of memorization. We
choose Math500 as the distilled s1 Qwen models
were also evaluated on it. See the results in Fig. 5
using UMAP visualization as before. We show that
the style of the model distilled on Gemini reasoning
traces is also closer in style to the Gemini reason-
ing traces than to the DeepSeek reasoning traces.
Thus, the student model is effectively adopting the
style of the teacher model (same for the DeepSeek
model).

B.2 Rephrases of the MRPC dataset

Using synthetic data in pre- and post-training
is increasingly common. We take the prompt
from Maini et al. (2024) and use the Mistral-7B-
Instruct-v0.1 model?° (Jiang et al., 2023) to create

12%gemini_thinking_trajectory” and ‘deepseek_think-
ing_trajectory” column in https://huggingface.co/
datasets/simplescaling/s1K-1.1

Hugging Face’s sentence-transformers/all-mpnet-base-v2

"“Hugging Face’s AnnaWegmann/Style-Embedding

https://x.com/Muennighoff/status/
1886405528777073134

"https://huggingface.co/simplescaling/s1-32B

"https://huggingface.co/simplescaling/s1.1-
32B

8By preceding the response with “\n<|im_start|[>think\n”

Phttps://huggingface.co/datasets/
HuggingFaceH4/MATH-500

Phttps://huggingface.co/mistralai/Mistral-
7B-Instruct-v0.1
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Figure 4: Overview of the survey structure This figure was digitalized from our own hand-drawn figure using
NotebookLM and DALL-E. It keeps the same wording as the source material.
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Figure 5: Style representations of distilled Qwen mod-
els are close to teacher models We compare reasoning
traces on s1 for DeepSeek and Gemini models (Muen-
nighoff et al., 2025) and reasoning traces on Math500
(Hendrycks et al., 2021) generated by models distilled
on the s1 DeepSeek and Gemini reasoning traces respec-
tively. The style representations (right) group the style
of the student model closer to the style of the teacher
model, while the semantic representations (left) overlap.

Wikipedia-style rephrases of the first 500 elements
of the MRPC dataset (Dolan and Brockett, 2005).
We use the same models as in §B.1 for the semantic
and style representations as well as hyperparame-
ters for the UMAP visualization. Style representa-
tions clearly distinguish the LLM rephrases from
the original sentences, while semantic representa-
tions do not (Fig. 6).

B.3 Clustering writers of English by native
language

We created Fig. 2 using the ETS Corpus of Non-
Native Written English (LDC2014T06) (Blanchard
et al., 2014). The corpus is comprised of En-
glish essays written by speakers of 11 non-English
native languages as part of an international test
of academic English proficiency, TOEFL (Test
of English as a Foreign Language). We used

Semantic Representations

Y
“W’ﬁﬁ
% ‘s% Dataset y Dataset
St - g: Original ; Original

P
i
‘9“. " '« .%a Mistral Rephrase X Mistral Rephrase

Style Representations

Figure 6: Comparing semantic and style representa-
tions of LLM-rephrases We compare MRPC sentences
(Dolan and Brockett, 2005) and their LLM-generated
“Wikipedia-style” rephrases using prompts from Maini
et al. (2024). Style embedding models (right) can easily
distinguish between the original and the LLM-rephrased
sentences, while semantic embeddings (left) overlap.
Studying stylistic diversity of LLM-rephrases is relevant
as stylistic rephrasing is increasingly used in dataset cu-
ration for pre- and post-training.

LUAR?! (Rivera Soto et al., 2021), a style rep-
resentation model trained on the authorship ver-
ification task. Each point in the figure is an em-
bedding of 5 TOEFL essays written by authors of
the same native language picked at random. We
reduce the dimensionality to two components us-
ing UMAP (Mclnnes et al., 2018) with default set-
tings. Although the style representation was ini-
tially trained on the “idiolectal” authorship verifi-
cation task (distinguishing authors based on their
distinctive language use), Fig. 2 reveals that it also
captures features indicative of the writer’s native
language.

Y'https://huggingface.co/rriveral1849/LUAR-MUD
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C Additions to style conceptualizations

Fully separating style and semantic meaning
might be impossible.

Sociolinguists generally think of styles as
different ways of saying the same thing.
In every field that studies style seriously,
however, this is not so.

— Penelope Eckert

A precise separation of semantic meaning and
style poses practical challenges. It has been ar-
gued that, for example, only Labov (1972)’s origi-
nal object of study—phonological variables—can
leave semantic meaning untouched, whereas all
other variables, including lexical and syntactic vari-
ables, will necessarily change the semantic mean-
ing (Campbell-Kibler, 2011; Lavandera, 1978; Sun
et al., 2023). Additionally, Eckert (2008, 2012)
argues that using a certain style systematically con-
nects an utterance to the social world, and that style
thus influences social meaning. Others argue that
any two forms must necessarily contrast in mean-
ing (Clark, 1992). Some work in sociolinguistics
sidesteps the problem of meaning equivalence by
identifying and studying the contexts in which a set
of linguistic forms are alternants without claiming
equivalence (Campbell-Kibler, 2011; Christensen
and Jensen, 2022). Nonetheless, we believe that
attempting to separate style and semantic meaning
has practical uses (see §2.2 or Weiner and Labov
(1983)).

Style across research fields Several fields study
linguistic style in some capacity. As discussed in
the paper, sociolinguistics examines the relation-
ship between language and society with a focus
on language change and variation (Eckert, 2008;
Labov, 1972). Corpus linguistics is the descrip-
tive study of how language is actually used by an-
alyzing text corpora (e.g. Biber, 1988; Biber and
Conrad, 2019). Typical applications might include
comparing language between different genres like
scientific papers and news articles. Forensic lin-
guistics involves the study of style in the context
of law and crime investigation and is typically in-
terested in recognizing a style or idiolect that helps
distinguish an investigated individual (Coulthard,
2004). Practical insights from forensic linguistics
also reciprocally influence stylistics and stylometry,
which more generally study linguistic style in lan-
guage. Stylometry applications include investigat-
ing the style of literary authors (Holmes, 1985) or

attributing disputed literary works (Burrows, 2002;
Mosteller and Wallace, 1963; Stamatatos, 2009).
Style in NLP has been investigated to character-
ize authors (e.g., age or gender in Koppel et al.,
2002; Nguyen et al., 2013), detect stylistic incon-
sistencies (Collins et al., 2004; Stamatatos, 2009),
and adapt styles in machine translation (Niu et al.,
2017, 2018; Rabinovich et al., 2017). Linguistic
style also plays a significant role in related fields
like psycholinguistics, or even in communication
and marketing, such as by influencing consumer
engagement (Munaro et al., 2024; ShabbirHusain
et al., 2023) and purchases (Ludwig et al., 2013).

Note that these fields are not strictly separable.
Methods from corpus linguistics can inform soci-
olinguistics, forensic linguistics can use methods
from stylometry, and so on. Further, there are sev-
eral fields that can be connected to linguistic style
that we do not specifically discuss here, such as
discourse analysis, digital humanities, linguistic
anthropology, and sociology.

D Additions to representing style in NLP

Available predefined feature extraction tools
There are a multitude of tools available that au-
tomatically extract predefined features from text.
The choice of tool and feature set, though, depends
on various factors, such as preferred programming
language, the nature of the data, and the goal of the
task. Therefore, best practice is to systematically
compare multiple feature sets, sometimes across
tools, for each specific use case. Python tools in-
clude but are not limited to spaCy (Honnibal et al.,
2020), Stanza (Qi et al., 2020), and NLTK (Bird
et al., 2019) for general text processing, PAN sub-
missions for authorship attribution (Weerasinghe
and Greenstadt, 2020) and style change detection
tasks (Strem (2021), Zlatkova et al. (2018), LFTK
(Lee and Lee, 2023) for extracting numerous sty-
lometric features (but not n-grams), NeuroBiber
and BiberPlus (Alkiek et al., 2025) for extracting
Biber-style features, and StyloSpeaker (Aggazzotti
and Smith, 2025) for extracting speech transcript
features. Non-Python stylometric authorship tools
include Stylo in R (Eder et al., 2016) and JStylo
in Java (PSAL, 2013). Software that does not re-
quire programming includes LIWC (Pennebaker
et al., 2015), which groups words into linguisti-
cally and psychologically meaningful categories;
JGAAP (Juola et al., 2009) and Signature (Milli-
can, 2003), which extract stylometric and n-gram



features; and Coh-Metrix, which can measure more
complex features like text cohesion (Graesser et al.,
2004). We summarize these tools in Tab. 2.

Available automatically-learned models To the
best of our knowledge, the available learned style
representation models on HuggingFace are CISR??
(Wegmann et al., 2022), StyleDistance®® (Patel
et al., 2025), mStyleDistance** (Qiu et al., 2025),
LUAR?® (Rivera Soto et al., 2021) and Multilin-
gual Style Representation® (Kim et al., 2025). An-
other model available via a private sharing site is
LISA?7 (Patel et al., 2023). Following the discus-
sion in §3.2, some style representations may capture
more semantic features than others, and thus may
prove to be more useful for different downstream
tasks. We summarize these models in Tab. 3.

D.1 Additions to the future of style
representations

I ? Automatic feature selection

Future work could attempt to create strategies to
select predefined features that work best for differ-
ent kinds of data and objects of study or develop an
ensemble method that can select the best features
dynamically.

I ? Including language modeling objectives
Previous work found that fine-tuning pretrained
transformer models on style tasks can curiously
lead to reduced performance on some style tasks
compared to the pretrained base model (Patel et al.,
2024; Wegmann and Nguyen, 2021). This might
be connected to a difference in the object of study
for the training and evaluation tasks. For exam-
ple, using individuals as the object of study (e.g.,
using authorship verification as the training task)
can lead to unlearning stylistic attributes that can
vary for the same individual (e.g., the formality of
their writing across online forums, job applications,
and other contexts). When aiming to learn general-
purpose style representations, it might be necessary
to include further stylistic or continued language

Zhttps://huggingface.co/AnnaWegmann/Style-
Embedding
Bhttps://huggingface.co/StyleDistance/
styledistance
*https://huggingface.co/StyleDistance/
mstyledistance
Bhttps://huggingface.co/rriveral849/LUAR-MUD
*https://huggingface.co/Blablablab/
multilingual-style-representation-Llama-3.2
https://ajayp.app/posts/2023/11/learning-
interpretable-embeddings-via-1lms/

modeling objectives like masked language model-
ing.

I ? Improve content-independence

This was already mentioned in the main paper,
but we highlight this point for more clarity again.
“Generally, few style representations reach high
scores on content-independence (*4, App. Tab. 3)
and might benefit from more exhaustive content dis-
entanglement.”, see §4.1. Consider current content-
disentanglement strategies in §3.2.

E Additions to evaluating style
representations

Leverage measurement theory We give some
concrete examples of how measurement theory (™
see Trochim et al., 2015) might be applied for style
embeddings and benchmarks. Measurement the-
ory can provide a theoretical framework that helps
make sure different important validity and reliabil-
ity aspects are considered in the evaluation of style
representations and style benchmarks.

For style embeddings, convergent validity (i.e.,
does the measure show similar measurement for
similar concepts?) might be assessed by testing
that texts that have a similar style have similar rep-
resentations. This could be done by perturbing texts
in stylistically inconsequential ways (e.g., by swap-
ping out named entities like “Maria has style.” to
“Emma has style.”) and comparing their embed-
dings. Discriminant validity (i.e., Is the measure
not sensitive to concepts it should not be related
to?) might be assessed by confirming that texts that
change in other aspects than style (e.g., content) are
still embedded similarly. This has been assessed
before by evaluating content-independence (§ 4).
Predictive validity (i.e., Can the measure be used
to predict something that it should be predictive
of?) might be assessed by evaluating performance
on downstream tasks that make use of style rep-
resentations, such as style classification or style
transfer tasks (§4). ", See also Fang et al. (2022)
for further inspiration.

For style benchmarks, reliability (i.e., Is the mea-
sure giving the same results with repeated mea-
surement?) might be improved by making sure
that the same seeds are used when applying the
benchmarks—for example, when using style clas-
sification tasks and a classifier is trained on top of
embeddings. *4, See also Bean et al. (2025) for fur-
ther inspiration related to benchmark validity—for
example, they suggest to employ sampling strate-
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gies like stratified sampling that are representative
of the task space.

F Additions to what style representations
can enable

Disentangle internal representations It may be
useful to disentangle LLM-internal representations
of style to allow models to turn style information on
or off as needed. Disentanglement approaches have
helped cross-domain generalization (Yang et al.,
2023; Zheng and Lapata, 2022) and might also help
cross-style generalization. This can be especially
relevant for stylistic tasks (e.g., machine text de-
tection) that should rely on, and for semantic tasks
(e.g., reasoning) that should not rely on, style in-
formation (Wegmann et al., 2025). Disentangle-
ment might work especially well with mixture-of-
experts approaches (Artetxe et al., 2022), with style-
specific architectures (e.g., tokenizers) for relevant
experts.

Authorship attribution Style representations
can enable authorship verification and attribution
tasks, including historical authorship attribution of
disputed texts (Mosteller and Wallace, 1963), iden-
tifying harmful actors (Arabnezhad et al., 2020;
Saxena et al., 2025), detecting plagiarism in educa-
tional contexts (Elkhatat et al., 2023), and attribut-
ing speakers from speech transcripts (Aggazzotti
et al., 2024, 2025b; Tripto et al., 2023).

Considering style in annotations Human-
written texts and labels can include spurious
correlations as a result of annotation instructions
(Gururangan et al., 2018). Style representations
could be used to monitor the output of annotation
efforts, and ultimately, to distinguish instructions
that evoke more stylistically diverse annotations.

Bias identification and reduction As mentioned
(§ 1), language models are often biased against
certain styles, including those associated with
marginalized groups. Approaches detailed in §5.1,
like curating training and evaluation datasets with
more diverse styles, can improve performance
across styles and thus reduce model bias. Further,
it might be possible to use style representations to
identify biased behavior of a trained model: For
example, representations might be used to generate
(§5.2) or cluster texts of similar styles, enabling sys-
tematic comparisons of model performances across
style clusters.

Develop style measures With style measures we
mean the broader class of methods and metrics that
include style representations. One might, for exam-
ple, develop a metric that measures the formality
of a text, returning values between 0 and 1. Style
representations are similarly quantitative measures
of stylistic properties, but they typically encode (la-
tent) stylistic dimensions in a vector space. In this
study, we focus on style representations, but they
can be applied to develop style metrics.

F.1 Open questions in the application of style
representations

We add open challenges in the application of style
representations to different problems.

Circular evaluation in style transfer When per-
forming generative tasks conditioned on style rep-
resentations, such as authorship style transfer, dif-
ficulties can arise when comparing models. Var-
ious works (Horvitz et al., 2024a,b; Khan et al.,
2024) train authorship style transfer models with
the aid of style embedding models (§3.2) but also
evaluate the adherence to the target style using
style embedding models. When comparing two
systems like ParaGuide (Horvitz et al., 2024a) and
StyleMC (Khan et al., 2024), the former trained
with CISR embeddings (Wegmann et al., 2022)
and the latter with LUAR embeddings (Rivera Soto
et al., 2021), it remains unclear which embedding
space to use for evaluation without giving either
model undue advantage. We encourage the commu-
nity to investigate additional possibilities for evalu-
ation (e.g., based on predefined features, cf. §4.1)
or establish a standard representation for training
as well as evaluation.

Should we even care about styles for user-
facing LLMs? Some recent work shows that
more human-like outputs by LLMs might be dis-
preferred by humans and might lead to increased
anthropomorphism (Cheng et al., 2025; Sandoval
et al., 2025). This hints at a complex set of desider-
ata NLP researchers should consider when build-
ing LLMs and when using representations to steer
LLMs toward generating texts in different styles.
However, what style of output is preferred remains
highly contextual (i.e., dependent on the setting)
(Sandoval et al., 2025), and we believe that training
on stylistically diverse corpora remains essential
for LLMs to understand and engage with diverse
human styles.



G Intended use and licenses for used
artifacts

We only use models and datasets for motivating
examples in our survey. We discuss their licenses
and intended use below.

G.1 Datasets

slk We use the slk dataset provided by
Muennighoff et al. (2025) and accessed
at https://huggingface.co/datasets/
simplescaling/s1K-1.1.  The dataset was
shared with an MIT license, which we adhere to.

MRPC We use the MRPC dataset pro-
vided by Dolan and Brockett (2005). The
dataset is available on the Microsoft website
at https://www.microsoft.com/en-us/
download/details.aspx?id=52398. No
license information is easily available. However,
it is a widely used and shared dataset, and the
paper mentions it is for the express purpose of
stimulating research.

Math500 We use the Math500 dataset pro-
vided by Lightman et al. (2023). It was shared
with an MIT license by OpenAl. See https://
github.com/openai/prm800k/.

ETS Corpus of Non-Native Written En-
glish We use the ETS Corpus of Non-Native
Written English (also known as TOEFLI11
or LDC2014T06) provided by Blanchard
et al. (2014). It is accessed via the Lin-
guistic Data Consortium (LDC) at https:
//catalog.ldc.upenn.edu/LDC2014T06. The
dataset is distributed under a specific LDC user
license agreement restricted to non-commercial
research use, which we adhere to.

G.2 Models

CISR We use Wegmann et al. (2022)’s
CISR model at https://huggingface.co/
AnnaWegmann/Style-Embedding.  No clear
license information is given, but the model was
published in a research paper encouraging further
use.

LUAR We use Rivera Soto et al. (2021)’s
LUAR model at https://huggingface.co/
rrivera1849/LUAR-MUD, shared with an Apache
2.0 license, which we adhere to.

SBERT We use an SBERT (Reimers and
Gurevych, 2019) semantic representation
model, https://huggingface.co/sentence-
transformers/all-mpnet-base-v2, shared
with an Apache 2.0 license, which we adhere to.

Mistral We use Jiang et al. (2023)’s Mistral-7B-
Instruct-v0.1 model, https://huggingface.co/
mistralai/Mistral-7B-Instruct-v0.1. The
model was shared with an Apache 2.0 license,
which we adhere to.

sl models We use Muennighoff et al. (2025)’s
fine-tuned Qwen models on Gemini (https:
//huggingface.co/simplescaling/s1-32B)
and DeepSeek (https://huggingface.co/
simplescaling/s1.1-32B). Both models are
shared with an Apache 2.0 license, which we
adhere to.

H Identifying or offensive content in
datasets

We use small existing datasets only for motivating
examples (see §B). We do not release datasets. We
do not expect the used datasets (§G.1) to include
offensive content as they are reasoning datasets,
crowd-worker created paraphrases and TOEFL es-
says. However, the TOEFL essays might include
some personally identifying content. We did not
take steps to remove identifiable cues or offensive
content. We hope that the effect is negligible as the
datasets were already publicly accessible and we
only use them as motivating examples.

I Use of AI Assistants

We used ChatGPT, GitHub Copilot, and Claude
Code for coding, to look up commands, and to
generate individual functions for plotting. Gener-
ated functions were tested w.r.t. expected behavior.
We used Al assistants (mostly Claude and Chat-
GPT) for concise rephrasing and grammatical error
correction in writing. We used NotebookLM and
DALL-E to generate one figure based on specific
instructions including exact wording (see Appendix
Fig. 4).
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Type

Variable

Examples

PHONETIC postvocalic /t/ more or less clear pronunciation of /r/ sound after vowel (Labov, 1972)
intervocalic /t/ full/flapped /t/ voicing between two vowel sounds (writer — rider) (Bell, 1984)
MORPHO- word endings g-dropping (Campbell-Kibler, 2007), gerunds (Biber, 1988)
LOGICAL
nominalizations ending in -tion, -ment
verb morphology be as a main or auxillary verb (Biber, 1988)
LEXICAL word/token counts number of words/tokens (Stamatatos, 2009)
word/token ratios ratio of types to tokens, ratio of short/long words to token count, etc. (Altakrori
etal., 2021)
word/token n-grams for n of various lengths (Abbasi and Chen, 2008; Stamatatos, 2009)
word length average word length (Biber, 1988), also cf. Grieve (2007)
sentence length distribution of average sentence length, cf. Grieve (2007)
vocabulary richness hapax (dis)legomena, Yule’s I/K, number of unique tokens (Abbasi and Chen,
2008; Stamatatos, 2009)
function words grammar-functioning words, e.g., the, be, to (Abbasi and Chen, 2008; Mosteller
and Wallace, 1963; Stamatatos, 2009)
pronoun use word frequency distributions of 1st, 2nd,... person pronouns (Biber, 1988; Pen-
nebaker et al., 2015)
hedge words at about, something like as hedges in Biber MDA features; maybe, perhaps in
tentative dimension in LIWC
quantifiers each, all as quantifier words or everybody, anybody as quantifier pronouns (Biber,
1988)
SYNTACTIC POS counts noun, verb, adjective,... (Abbasi and Chen, 2008; Biber, 1988)
POS n-grams for various n (Abbasi and Chen, 2008; Weerasinghe and Greenstadt, 2020)
passive voice agentless passives (Biber, 1988)
subordination features that relative clause vs. wh- relative clause (e.g., the dog that vs. the dog who)
(Biber, 1988)
negation need no water as negative concord (Eckert, 2008); not in analytic negation (Biber,
1988), negation words in LIWC
invariant be He be working (Rickford and McNair-Knox, 1994)
zero copula She nice (Rickford and McNair-Knox, 1994)
DISCOURSE contraction use can’t vs. cannot (contractions list! Biber (1988))
discourse particle well, now (Biber, 1988)
readability Flesch Reading Ease, Flesch Kincaid Grade Level, etc. (Python’s textstatj
compression train a compression model on one text and use it to estimate how similar in style
another text is, cf. Stamatatos (2009)
ORTHO- character types hashtags, emojis, exclamation marks (Clarke and Grieve, 2017); uppercase
GRAPHIC characters, digits (Stamatatos, 2009)

character n-grams

for various n (Abbasi and Chen, 2008; Stamatatos, 2009)

lengthening cooool (Nguyen and Grieve, 2020)
number substitutions 2day (Crystal, 2008)
misspellings common misspellings list’

acronyms/abbreviations  common shortened forms list*

" https://en.wikipedia.org/wiki/Wikipedia:List_of_English_contractions

2 https://pypi.org/project/textstat/

* https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
* https://en.wikipedia.org/wiki/SMS_language

Table 1: Overview of predefined feature style operationalizations used in different fields. Specific linguistic
features that have been used to operationalize style and examples of each are categorized by linguistic level: phonetic
(i.e., pronunciation and sound patterns), morphological (i.e., word structure and inflection), lexical (i.e., word choice),
syntactic (i.e., sentence structure), discourse (i.e., larger structure), and orthographic (i.e., spelling and punctuation).
Note that the categorizations might overlap, e.g., g-dropping might also be considered an orthographic or phonological
variable, and character n-grams might encode different morphemes. These features have been investigated separately
(Campbell-Kibler, 2009) and collectively (e.g., Abbasi and Chen, 2008; Biber, 1988; Neal et al., 2017; Stamatatos,
2009). This table was inspired by and partially filled with elements from other tables of stylometric features in these
and other sources. For further references and examples consider also Grieve (2007) and Biber (1988).
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Tool Original Purpose Language/ Type Link
Platform
°p aCy‘ General text processing  Python library ithub.com/explosion/spaC
(Honnibal et al., 2020) g Ehub: P pavy
Stanza General text pri in, Python libr h ://github.com/stanfordnlp/
(Ql et al., 2020) eneral teXt processing ytho ary ttps://github.com/stanfordnlp/stanza
NLTK . . A
(Bird et al., 2019) General text processing  Python library github.com/nltk/nltk
PAN 2020 AV
(Weerasinghe and AV Python Task subm. github.com/janithnw/
Greenstadt, 2020 an2020_authorship_verification
> P p
?Sligé?g(l)zslglj SCD Python Task subm. github.'com/eivis'tr/panQ1—style—change—
detection-stacking-ensemble
PAN 2019 SCD .
(Zuo et al., 2019) SCD Python Task subm. github.com/chzuo/PAN_2019
FZAIEIi\'[IkZO(ilaSetSSI]? 2018) SCD Python Task subm. github.com/macAhinelearning-su/style-
change-detection
LFTK . . )
(Lee and Lee, 2023) tSr;};lt(i)(r)r:]e(tﬁlg nf_eg;;::s)ex- Python library github.com/brucewlee/1ftk
BiberPlus Biber-style feature ex- Python libras i thub.com/davidj /biberpl
(Alkiek et al., 2025) tractiony y ry github.com/davidjurgens/biberplus
E\IAellll(I;(;EI:te;’ 2025) g;}();ll;;tyle feature ex- HF Model huggingface.co/Blablablab/neurobiber
MAT . . . .
. Biber-style feature ex- Python library github.com/andreanini/
(Nini, 2019) . o . .
traction multidimensionalanalysistagger
StyloSpeaker
(Aggazzotti and Smith, Speech transcript fea- Python library github.com/caggazzotti/styloSpeaker
2025) ture extraction
(Sé}éleor (6:1211., 2016) Stylometric authorship R library github.com/computationalstylistics/
analysis stylo
JStylo (Java . .
(PS};%LS 201:),’) Sg%;)/rsliq:trlc authorship  Java App github.com/psal/jstylo
LIWC
(Pennebaker et al, Ling./psych. categories ~SW (GUI)  App www.liwc.app/
2015)
JGAAP . ) )
(Juola et al., 2009) ?etzftl;)rrélsetnc + n-gram  SW (GUI) App evllabs.github.io/JGAAP/
(Sl\l/%llllﬁzéi 2003) ?;Ztll?;::mc + n-gram SW (GUI) App www.philocomp.net/texts/signature.htm
Coh-Metrix Text cohesion and dis- SW (GUI) App soletlab.asu.edu/coh-metrix/

(Graesser et al., 2004)

course features

Table 2: Comparison of common tools for extracting predefined features The table summarizes their original
purpose, programming language or platform, type of resource, and URL. Abbreviations: AV = authorship verification,
Task subm. = shared-task submission, SCD = style change detection, HF = Hugging Face, App = standalone
application, SW = non-programming software. These tools particularly work for English, but see our Github for
tools/papers for other languages: https://huggingface.co/AnnaWWegmann/Style-Embedding.
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Model Training Task Languages Content/ Style Disentanglement Interpretable? Tasks

LUAR AV English Weak No AR, MTD
CISR AV English Medium No AV, MTD
StyleDistance AV English Strong No AV, ST
mStyleDistance AV Multiple Strong No AV, ST
LISA AV English Strong Yes Unknown
Multilingual Style AV Multiple Medium No AR, MTD

Table 3: Comparison of open-source learned style representation models The categorization is based on key
dimensions including the languages supported, the measured strength of content/style disentanglement, interpretabil-
ity, and the specific downstream tasks the models are have been found useful for. Note that the models may be useful
for more tasks than stated here, the analysis is based on the authors’ experience with them. Acronym Definitions:
AR = Authorship Retrieval, AV = Authorship Verification, MTD = Machine-Text Detection, ST = Style Transfer
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